-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_lm.py
executable file
·141 lines (90 loc) · 3.38 KB
/
train_lm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import sys
import torch
import numpy as np
import torch.nn as nn
from torch.optim.lr_scheduler import StepLR
from torch.utils.tensorboard import SummaryWriter
from data import Labels, TextDataset, DataLoaderCuda
from model import LanguageModel
from utils import AverageMeter
def detach_hidden(h):
"""Detach hidden states from their history."""
if isinstance(h, torch.Tensor):
return h.detach()
return tuple(detach_hidden(v) for v in h)
torch.backends.cudnn.benchmark = True
torch.manual_seed(0)
np.random.seed(0)
labels = Labels()
model = LanguageModel(128, 512, 256, len(labels), n_layers=3, dropout=0.3)
model.cuda()
bptt = 8
batch_size = 64
root = '/open-stt-e2e/data/'
train = [
root + 'asr_public_phone_calls_1.csv',
root + 'asr_public_phone_calls_2_aa.csv',
root + 'asr_public_phone_calls_2_ab.csv',
root + 'public_youtube1120_aa.csv',
root + 'public_youtube1120_ab.csv',
root + 'public_youtube1120_ac.csv',
root + 'public_youtube1120_hq.csv',
root + 'public_youtube700_aa.csv',
root + 'public_youtube700_ab.csv'
]
test = [
root + 'asr_calls_2_val.csv',
root + 'buriy_audiobooks_2_val.csv',
root + 'public_youtube700_val.csv'
]
train = TextDataset(train, labels, batch_size)
test = TextDataset(test, labels, batch_size)
test.shuffle(0)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=3e-4, weight_decay=1e-5)
scheduler = StepLR(optimizer, step_size=10000, gamma=0.99)
step = 0
writer = SummaryWriter(comment="_lm_bptt8_bs64_gn1_do0.3")
for epoch in range(1, 11):
model.train()
hidden = model.step_init(batch_size)
err = AverageMeter('Loss/train')
grd = AverageMeter('Gradient/train')
train.shuffle(epoch)
loader = DataLoaderCuda(train, batch_size=bptt, drop_last=True)
for inputs, targets in loader:
step += 1
# Starting each batch, we detach the hidden state from how it was previously produced.
# If we didn't, the model would try backpropagating all the way to start of the dataset.
hidden = detach_hidden(hidden)
optimizer.zero_grad()
output, hidden = model.step_forward(inputs, hidden)
loss = criterion(output, targets.view(-1))
loss.backward()
grad_norm = nn.utils.clip_grad_norm_(model.parameters(), 1)
optimizer.step()
scheduler.step()
err.update(loss.item())
grd.update(grad_norm)
writer.add_scalar(err.title + '/steps', loss.item(), step)
writer.add_scalar(grd.title + '/steps', grad_norm, step)
loader.set_description('Epoch %d %s %s' % (epoch, err, grd))
model.eval()
for i, lr in enumerate(scheduler.get_lr()):
writer.add_scalar('LR/%d' % i, lr, epoch)
err.summary(writer, epoch)
grd.summary(writer, epoch)
err = AverageMeter('Loss/test')
loader = DataLoaderCuda(test, batch_size=bptt, drop_last=True)
hidden = model.step_init(batch_size)
with torch.no_grad():
for inputs, targets in loader:
output, hidden = model.step_forward(inputs, hidden)
loss = criterion(output, targets.view(-1))
err.update(loss.item())
loader.set_description('Epoch %d %s' % (epoch, err))
sys.stderr.write('\n')
err.summary(writer, epoch)
writer.flush()
torch.save(model.state_dict(), writer.log_dir + '/model%d.bin' % epoch)
writer.close()