-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathMNIST-Conv-SELU.py
executable file
·66 lines (53 loc) · 2.5 KB
/
MNIST-Conv-SELU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Adapted KERAS tutorial
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, AlphaDropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
batch_size = 128
num_classes = 10
epochs = 30
# input image dimensions
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
# x_train = (x_train - np.mean(x_train))/np.std(x_train)
x_test /= 255
# x_test = (x_test - np.mean(x_train))/np.std(x_train)
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='selu', input_shape=input_shape, kernel_initializer='lecun_normal',
bias_initializer='zeros'))
model.add(Conv2D(64, (3, 3), activation='selu', kernel_initializer='lecun_normal', bias_initializer='zeros'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(AlphaDropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation='selu', kernel_initializer='lecun_normal', bias_initializer='zeros'))
model.add(AlphaDropout(0.5))
model.add(Dense(num_classes, activation='softmax', kernel_initializer='lecun_normal', bias_initializer='zeros'))
model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
f = open('MNIST_SELU_results.txt', 'a')
f.write('Test loss:' + str(score[0]) + ' Test accuracy:' + str(score[1]) + '\n') # python will convert \n to os.linesep
f.close()