-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathmodel.py
37 lines (31 loc) · 1.46 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from keras.models import Sequential
from keras.layers.core import Dense, Dropout
from keras.layers.recurrent import LSTM
import time
from sklearn import preprocessing
from math import sqrt
def lstm_rnn_model(layers):
model = Sequential()
model.add(LSTM(256, input_shape=(layers[1], layers[0]), return_sequences=True))
model.add(Dropout(0.3))
model.add(LSTM(256, input_shape=(layers[1], layers[0]), return_sequences=False))
model.add(Dropout(0.3))
model.add(Dense(32, kernel_initializer='uniform', activation='relu'))
model.add(Dense(1, kernel_initializer='uniform', activation='linear'))
start = time.time()
model.compile(loss='mse', optimizer='adam', metrics=['accuracy'])
print("Compilation Time: ", time.time() - start)
return model
def denormalize(data, normalized_value):
data = data['adj close'].values.reshape(-1, 1)
normalized_value = normalized_value.reshape(-1, 1)
min_max_scaler = preprocessing.MinMaxScaler()
a = min_max_scaler.fit_transform(data)
new = min_max_scaler.inverse_transform(normalized_value)
return new
def model_score(model, x_train, y_train, x_test, y_test):
train_score = model.evaluate(x_train, y_train, verbose=0)
print('Train Score: %.5f MSE (%.2f RMSE)' % (train_score[0], sqrt(train_score[0])))
test_score = model.evaluate(x_test, y_test, verbose=0)
print('Test Score: %.5f MSE (%.2f RMSE)' % (test_score[0], sqrt(test_score[0])))
return train_score[0], test_score[0]