forked from HAHA-DL/MLDG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_baseline.py
52 lines (43 loc) · 1.16 KB
/
main_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from pathlib import Path
from fire import Fire
from flags import Flags
from model import ModelBaseline
def train(
batch_size: int = 128,
data_dir: str = "data",
debug: bool = False,
inner_loops: int = 200000,
log_dir: str = "logs",
lr: float = 0.0001,
model_dir: str = "models",
momentum: float = 0.9,
num_classes: int = 10,
state_dict: str = "",
step_size: int = 1,
test_every: int = 50,
unseen_index: int = 0,
weight_decay: float = 0.00005,
):
flags = Flags(
batch_size=batch_size,
data_dir=Path(data_dir),
debug=debug,
inner_loops=inner_loops,
log_dir=Path(log_dir),
lr=lr,
model_dir=Path(model_dir),
momentum=momentum,
num_classes=num_classes,
state_dict=state_dict,
step_size=step_size,
test_every=test_every,
unseen_index=unseen_index,
weight_decay=weight_decay,
)
flags.create_dirs()
model_obj = ModelBaseline(flags=flags)
model_obj.train()
# after training, we should test the held out domain
model_obj.heldout_test()
if __name__ == "__main__":
Fire({"train": train})