forked from agda/agda-stdlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHierarchies.agda
330 lines (252 loc) · 11.1 KB
/
Hierarchies.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
------------------------------------------------------------------------
-- The Agda standard library
--
-- An explanation about how mathematical hierarchies are laid out.
------------------------------------------------------------------------
{-# OPTIONS --allow-unsolved-metas #-}
module README.Design.Hierarchies where
open import Data.Sum using (_⊎_)
open import Level using (Level; _⊔_; suc)
open import Relation.Binary using (_Preserves₂_⟶_⟶_)
private
variable
a b ℓ : Level
A : Set a
------------------------------------------------------------------------
-- Introduction
------------------------------------------------------------------------
-- One of the key design decisions facing the library is how to handle
-- mathematical hierarchies, e.g.
-- ∙ Binary relations: preorder → partial order → total order
-- ↘ equivalence
-- ∙ Algebraic structures: magma → semigroup → monoid → group
-- ↘ band → semilattice
--
-- Some of the hierarchies in the library are:
-- ∙ Algebra
-- ∙ Function
-- ∙ Relation.Binary
-- ∙ Relation.Binary.Indexed
--
-- A given hierarchy `X` is always split into 4 seperate folders:
-- ∙ X.Core
-- ∙ X.Definitions
-- ∙ X.Structures
-- ∙ X.Bundles
-- all four of which are publicly re-exported by `X` itself.
--
-- Additionally a hierarchy `X` may contain additional files
-- ∙ X.Bundles.Raw
-- ∙ X.Consequences
-- ∙ X.Constructs
-- ∙ X.Properties
-- ∙ X.Morphisms
--
-- Descriptions of these modules are now described below using the
-- running example of the `Relation.Binary` and `Algebra` hierarchies.
-- Note that we redefine everything here for illustrative purposes,
-- and that the definitions given below may be slightly simpler
-- than the real definitions in order to focus on the points being
-- discussed.
------------------------------------------------------------------------
-- Main hierarchy modules
------------------------------------------------------------------------
------------------------------------------------------------------------
-- X.Core
-- The Core module contains the basic units of the hierarchy.
-- For example for binary relations these are homoegeneous and
-- heterogeneous binary relations:
REL : Set a → Set b → (ℓ : Level) → Set (a ⊔ b ⊔ suc ℓ)
REL A B ℓ = A → B → Set ℓ
Rel : Set a → (ℓ : Level) → Set (a ⊔ suc ℓ)
Rel A ℓ = A → A → Set ℓ
-- and in Algebra these are unary and binary operators, e.g.
Op₁ : Set a → Set a
Op₁ A = A → A
Op₂ : Set a → Set a
Op₂ A = A → A → A
------------------------------------------------------------------------
-- X.Definitions
-- The Definitions module defines the various properties that the
-- basic units of the hierarchy may have.
-- For example in Relation.Binary this includes reflexivity,
-- transitivity etc.
Reflexive : Rel A ℓ → Set _
Reflexive _∼_ = ∀ {x} → x ∼ x
Symmetric : Rel A ℓ → Set _
Symmetric _∼_ = ∀ {x y} → x ∼ y → y ∼ x
Transitive : Rel A ℓ → Set _
Transitive _∼_ = ∀ {x y z} → x ∼ y → y ∼ z → x ∼ z
Total : Rel A ℓ → Set _
Total _∼_ = ∀ x y → x ∼ y ⊎ y ∼ x
-- For example in Algebra these are associativity, commutativity.
-- Note that all definitions for Algebra are based on some notion of
-- underlying equality.
Associative : Rel A ℓ → Op₂ A → Set _
Associative _≈_ _∙_ = ∀ x y z → ((x ∙ y) ∙ z) ≈ (x ∙ (y ∙ z))
Commutative : Rel A ℓ → Op₂ A → Set _
Commutative _≈_ _∙_ = ∀ x y → (x ∙ y) ≈ (y ∙ x)
LeftIdentity : Rel A ℓ → A → Op₂ A → Set _
LeftIdentity _≈_ e _∙_ = ∀ x → (e ∙ x) ≈ x
RightIdentity : Rel A ℓ → A → Op₂ A → Set _
RightIdentity _≈_ e _∙_ = ∀ x → (x ∙ e) ≈ x
-- Note that the types in `Definitions` modules are not meant to express
-- the full concept on their own. For example the `Associative` type does
-- not require the underlying relation to be an equivalence relation.
-- Instead they are designed to aid the modular reuse of the core
-- concepts. The complete concepts are captured in various
-- structures/bundles where the definitions are correctly used in
-- context.
------------------------------------------------------------------------
-- X.Structures
-- When an abstract hierarchy of some sort (for instance semigroup →
-- monoid → group) is included in the library the basic approach is to
-- specify the properties of every concept in terms of a record
-- containing just properties, parameterised on the underlying
-- sets, relations and operations. For example:
record IsEquivalence {A : Set a}
(_≈_ : Rel A ℓ)
: Set (a ⊔ ℓ)
where
field
refl : Reflexive _≈_
sym : Symmetric _≈_
trans : Transitive _≈_
-- More specific concepts are then specified in terms of the simpler
-- ones:
record IsMagma {A : Set a} (≈ : Rel A ℓ) (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isEquivalence : IsEquivalence ≈
∙-cong : ∙ Preserves₂ ≈ ⟶ ≈ ⟶ ≈
record IsSemigroup {A : Set a} (≈ : Rel A ℓ) (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ≈ ∙
associative : Associative ≈ ∙
open IsMagma isMagma public
-- Note here that `open IsMagma isMagma public` ensures that the
-- fields of the `isMagma` record can be accessed directly; this
-- technique enables the user of an `IsSemigroup` record to use underlying
-- records without having to manually open an entire record hierarchy.
-- This is not always possible, though. Consider the following definition
-- of preorders:
record IsPreorder {A : Set a}
(_≈_ : Rel A ℓ) -- The underlying equality.
(_∼_ : Rel A ℓ) -- The relation.
: Set (a ⊔ ℓ) where
field
isEquivalence : IsEquivalence _≈_
refl : Reflexive _∼_
trans : Transitive _∼_
module Eq = IsEquivalence isEquivalence
-- The IsEquivalence field in IsPreorder is not opened publicly because
-- the `refl` and `trans` fields would clash with those in the
-- `IsPreorder` record. Instead we provide an internal module and the
-- equality fields can be accessed via `Eq.refl` and `Eq.trans`.
------------------------------------------------------------------------
-- X.Bundles
-- Although structures are useful for describing the properties of a
-- given set of operations/relations, sometimes you don't require the
-- properties to hold for a given set of objects but only that such a
-- set of objects exists. In this case bundles are what you're after.
-- Each structure has a corresponding bundle that include the structure
-- along with the corresponding sets, relations and operations as
-- fields.
record Setoid c ℓ : Set (suc (c ⊔ ℓ)) where
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
isEquivalence : IsEquivalence _≈_
open IsEquivalence isEquivalence public
-- The contents of the structure is always re-exported publicly,
-- providing access to its fields.
record Magma c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
isMagma : IsMagma _≈_ _∙_
open IsMagma isMagma public
record Semigroup : Set (suc (a ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set a
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
isSemigroup : IsSemigroup _≈_ _∙_
open IsSemigroup isSemigroup public
magma : Magma a ℓ
magma = record { isMagma = isMagma }
-- Note that the Semigroup record does not include a Magma field.
-- Instead the Semigroup record includes a "repackaging function"
-- semigroup which converts a Magma to a Semigroup.
-- The above setup may seem a bit complicated, but it has been arrived
-- at after a lot of thought and is designed to both make the hierarchies
-- easy to work with whilst also providing enough flexibility for the
-- different applications of their concepts.
-- NOTE: bundles for the function hierarchy are designed a little
-- differently, as a function with an unknown domain an codomain is
-- of little use.
------------------------------------------------------------------------
-- Other hierarchy modules
------------------------------------------------------------------------
------------------------------------------------------------------------
-- X.Bundles.Raw
-- Sometimes it is useful to have the bundles without any accompanying
-- laws. These correspond more or less to what the definitions would
-- be in non-dependently typed languages like Haskell.
-- Each bundle thereofre has a corresponding raw bundle that only
-- include the laws but not the operations.
record RawMagma c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
record RawMonoid c ℓ : Set (suc (c ⊔ ℓ)) where
infixl 7 _∙_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_∙_ : Op₂ Carrier
ε : Carrier
------------------------------------------------------------------------
-- X.Consequences
-- The "consequences" modules contains proofs for how the different
-- types in the `Definitions` module relate to each other. For example:
-- that any total relation is reflexive or that commutativity allows
-- one to translate between left and right identities.
total⇒refl : ∀ {_∼_ : Rel A ℓ} → Total _∼_ → Reflexive _∼_
total⇒refl = {!!}
idˡ+comm⇒idʳ : ∀ {_≈_ : Rel A ℓ} {e _∙_} → Commutative _≈_ _∙_ →
LeftIdentity _≈_ e _∙_ → RightIdentity _≈_ e _∙_
idˡ+comm⇒idʳ = {!!}
------------------------------------------------------------------------
-- X.Construct
-- The "construct" folder contains various generic ways of constructing
-- new instances of the hierarchy. For example
import Relation.Binary.Construct.Intersection
-- takes in two relations and forms the new relation that says two
-- elements are only related if they are related via both of the
-- original relations.
-- These files are layed out in four parts, mimicking the main modules
-- of the hierarchy itself. First they define the new relation, then
-- subsequently how the definitions, then structures and finally
-- bundles can be translated across to it.
------------------------------------------------------------------------
-- X.Morphisms
-- The `Morphisms` folder is a sub-hierarchy containing relationships
-- such homomorphisms, monomorphisms and isomorphisms between the
-- structures and bundles in the hierarchy.
------------------------------------------------------------------------
-- X.Properties
-- The `Properties` folder contains additional proofs about the theory
-- of each bundle. They are usually designed so as a bundle's
-- `Properties` file re-exports the contents of the `Properties` files
-- above it in the hierarchy. For example
-- `Algebra.Properties.AbelianGroup` re-exports the contents of
-- `Algebra.Properties.Group`.