-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoercion.ml
734 lines (685 loc) · 29.3 KB
/
coercion.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* Created by Hugo Herbelin for Coq V7 by isolating the coercion
mechanism out of the type inference algorithm in file trad.ml from
Coq V6.3, Nov 1999; The coercion mechanism was implemented in
trad.ml by Amokrane Saïbi, May 1996 *)
(* Addition of products and sorts in canonical structures by Pierre
Corbineau, Feb 2008 *)
(* Turned into an abstract compilation unit by Matthieu Sozeau, March 2006 *)
open CErrors
open Util
open Names
open Term
open Constr
open Context
open Environ
module CVars = Vars
open EConstr
open Vars
open Reductionops
open Pretype_errors
open Coercionops
open Evarutil
open Evarconv
open Evd
open Globnames
let { Goptions.get = get_use_typeclasses_for_conversion } =
Goptions.declare_bool_option_and_ref
~key:["Typeclass"; "Resolution"; "For"; "Conversion"]
~value:true
()
(* Typing operations dealing with coercions *)
exception NoCoercion
exception NoCoercionNoUnifier of evar_map * unification_error
let apply_coercion_args env sigma isproj bo ty arg arg_ty nparams =
let destProd sigma typ =
match EConstr.kind sigma (whd_all env sigma typ) with
| Prod (_, c1, c2) -> c1, c2
| _ -> anomaly (Pp.str "apply_coercion_args.") in
let rec apply_rec sigma acc typ nparams =
if nparams <= 0 then sigma, List.rev acc, typ else
let c1, c2 = destProd sigma typ in
let sigma, x = Evarutil.new_evar env sigma c1 in
apply_rec sigma (x :: acc) (subst1 x c2) (nparams - 1) in
let sigma, params, typ = apply_rec sigma [] ty nparams in
let sigma, args, typ =
let c1, c2 = destProd sigma typ in
let sigma =
let arg_ty = whd_zeta env sigma arg_ty in
try Evarconv.unify_leq_delay env sigma arg_ty c1
with Evarconv.UnableToUnify _ -> raise NoCoercion in
sigma, params @ [arg], subst1 arg c2 in
let bo, args =
match isproj with None -> bo, args | Some p ->
let npars = Projection.Repr.npars p in
let p = Projection.make p false in
let args = List.skipn npars args in
let hd, tl = match args with hd :: tl -> hd, tl | [] -> assert false in
mkProj (p, hd), tl in
sigma, applist (bo, args), params, typ
(* appliquer le chemin de coercions de patterns p *)
let apply_pattern_coercion ?loc pat p =
List.fold_left
(fun pat (co,n) ->
let f i =
if i<n then (DAst.make ?loc @@ Glob_term.PatVar Anonymous) else pat in
DAst.make ?loc @@ Glob_term.PatCstr (co, List.init (n+1) f, Anonymous))
pat p
(* raise Not_found if no coercion found *)
let inh_pattern_coerce_to ?loc env pat ind1 ind2 =
let p = lookup_pattern_path_between env (ind1,ind2) in
apply_pattern_coercion ?loc pat p
(* Program coercions *)
open Program
let make_existential ?loc ?(opaque = not (get_proofs_transparency ())) na env sigma c =
let src = Loc.tag ?loc (Evar_kinds.QuestionMark {
Evar_kinds.default_question_mark with
Evar_kinds.qm_obligation=Evar_kinds.Define opaque;
Evar_kinds.qm_name=na;
}) in
let sigma, v = Evarutil.new_evar env sigma ~src c in
let sigma = Evd.set_obligation_evar sigma (fst (destEvar sigma v)) in
sigma, v
let app_opt env sigma f t =
let sigma, t =
match f with
| None -> sigma, t
| Some f -> f sigma t
in
sigma, whd_betaiota env sigma t
let pair_of_array a = (a.(0), a.(1))
let disc_subset env sigma x =
match EConstr.kind sigma x with
| App (c, l) ->
(match EConstr.kind sigma c with
Ind (i,_) ->
let len = Array.length l in
let sigty = delayed_force sig_typ in
if Int.equal len 2 && QInd.equal env i (Globnames.destIndRef sigty)
then
let (a, b) = pair_of_array l in
Some (a, b)
else None
| _ -> None)
| _ -> None
exception NoSubtacCoercion
let hnf env sigma c = whd_all env sigma c
let hnf_nodelta env sigma c = whd_betaiota env sigma c
let lift_args n sign =
let rec liftrec k = function
| t::sign -> liftn n k t :: (liftrec (k-1) sign)
| [] -> []
in
liftrec (List.length sign) sign
let coerce ?loc env sigma (x : EConstr.constr) (y : EConstr.constr)
: evar_map * (evar_map -> EConstr.constr -> evar_map * EConstr.constr) option
=
let open Context.Rel.Declaration in
let rec coerce_unify env sigma x y =
let x = hnf env sigma x and y = hnf env sigma y in
try
Evarconv.unify_leq_delay env sigma x y, None
with
Evarconv.UnableToUnify _ -> coerce' env sigma x y
and coerce' env sigma x y : evar_map * (evar_map -> EConstr.constr -> evar_map * EConstr.constr) option =
let subco sigma = subset_inferred env sigma x y in
let hnf_decompose_prod c =
match Reductionops.hnf_decompose_prod_n_decls env sigma 1 c with
| [LocalAssum (na,t) | LocalDef (na,_,t)], c -> (na, t), c
| _ -> raise NoSubtacCoercion
in
let coerce_application sigma typ typ' c c' l l' =
let len = Array.length l in
let rec aux sigma tele typ typ' i co =
if i < len then
let hdx = l.(i) and hdy = l'.(i) in
try
let sigma = unify_leq_delay env sigma hdx hdy in
let (n, eqT), restT = hnf_decompose_prod typ in
let (n', eqT'), restT' = hnf_decompose_prod typ' in
aux sigma (hdx :: tele) (subst1 hdx restT) (subst1 hdy restT') (succ i) co
with UnableToUnify _ as exn ->
let _, info = Exninfo.capture exn in
let (n, eqT), restT = hnf_decompose_prod typ in
let (n', eqT'), restT' = hnf_decompose_prod typ' in
let sigma =
try
unify_leq_delay env sigma eqT eqT'
with UnableToUnify _ ->
let e, info = Exninfo.capture exn in
Exninfo.iraise (NoSubtacCoercion,info)
in
(* Disallow equalities on arities *)
if Reductionops.is_arity env sigma eqT then
Exninfo.iraise (NoSubtacCoercion,info);
let restargs = lift_args 1
(List.rev (Array.to_list (Array.sub l (succ i) (len - (succ i)))))
in
let args = List.rev (restargs @ mkRel 1 :: List.map (lift 1) tele) in
let pred = mkLambda (n, eqT, applist (lift 1 c, args)) in
let sigma, eq = papp env sigma coq_eq_ind [| eqT; hdx; hdy |] in
let sigma, evar = make_existential ?loc n.binder_name env sigma eq in
let eq_app sigma x = papp env sigma coq_eq_rect
[| eqT; hdx; pred; x; hdy; evar|]
in
aux sigma (hdy :: tele) (subst1 hdx restT)
(subst1 hdy restT') (succ i) (fun sigma x -> let sigma, x = co sigma x in eq_app sigma x)
else
sigma, Some (fun sigma x ->
let sigma, term = co sigma x in
let sigma, term = Typing.solve_evars env sigma term in
sigma, term)
in
if isEvar sigma c || isEvar sigma c' || not (Program.is_program_generalized_coercion ()) then
(* Second-order unification needed. *)
raise NoSubtacCoercion;
aux sigma [] typ typ' 0 (fun sigma x -> sigma, x)
in
match (EConstr.kind sigma x, EConstr.kind sigma y) with
| Sort s, Sort s' ->
(match ESorts.kind sigma s, ESorts.kind sigma s' with
| Prop, Prop | Set, Set -> sigma, None
| (Prop | Set), Type _ -> sigma, None
| Type x, Type y when Univ.Universe.equal x y -> sigma, None (* false *)
| _ -> subco sigma)
| Prod (name, a, b), Prod (name', a', b') ->
let name' =
{name' with
binder_name =
Name (Namegen.next_ident_away
Namegen.default_dependent_ident (Termops.vars_of_env env))}
in
let env' = push_rel (LocalAssum (name', a')) env in
let sigma, c1 = coerce_unify env' sigma (lift 1 a') (lift 1 a) in
(* env, x : a' |- c1 : lift 1 a' > lift 1 a *)
let sigma, coec1 = app_opt env' sigma c1 (mkRel 1) in
(* env, x : a' |- c1[x] : lift 1 a *)
let sigma, c2 = coerce_unify env' sigma (subst1 coec1 (liftn 1 2 b)) b' in
(* env, x : a' |- c2 : b[c1[x]/x]] > b' *)
(match c1, c2 with
| None, None -> sigma, None
| _, _ ->
sigma,
Some (fun sigma f ->
let sigma, t = app_opt env' sigma c2
(mkApp (lift 1 f, [| coec1 |])) in
sigma, mkLambda (name', a', t)))
| App (c, l), App (c', l') ->
(match EConstr.kind sigma c, EConstr.kind sigma c' with
Ind (i, u), Ind (i', u') -> (* Inductive types *)
let len = Array.length l in
let sigT = delayed_force sigT_typ in
let prod = delayed_force prod_typ in
(* Sigma types *)
if Int.equal len (Array.length l') && Int.equal len 2 && QInd.equal env i i'
&& (QInd.equal env i (destIndRef sigT) || QInd.equal env i (destIndRef prod))
then
if QInd.equal env i (destIndRef sigT)
then
begin
let (a, pb), (a', pb') =
pair_of_array l, pair_of_array l'
in
let sigma, c1 = coerce_unify env sigma a a' in
let remove_head sigma a c =
match EConstr.kind sigma c with
| Lambda (n, t, t') -> sigma, (c, t')
| Evar (k, args) ->
let (sigma, t) = Evardefine.define_evar_as_lambda env sigma (k,args) in
let (n, dom, rng) = destLambda sigma t in
let sigma =
if isEvar sigma dom then
let (domk, args) = destEvar sigma dom in
define domk a sigma
else sigma
in
sigma, (t, rng)
| _ -> raise NoSubtacCoercion
in
let sigma, (pb, b) = remove_head sigma a pb in
let sigma, (pb', b') = remove_head sigma a' pb' in
let ra = Retyping.relevance_of_type env sigma a in
let env' = push_rel
(LocalAssum (make_annot (Name Namegen.default_dependent_ident) ra, a))
env
in
let sigma, c2 = coerce_unify env' sigma b b' in
match c1, c2 with
| None, None -> sigma, None
| _, _ ->
sigma,
Some (fun sigma x ->
let sigma, t1 = papp env sigma sigT_proj1 [| a; pb; x |] in
let sigma, t2 = papp env sigma sigT_proj2 [| a; pb; x |] in
let sigma, x = app_opt env' sigma c1 t1 in
let sigma, y = app_opt env' sigma c2 t2 in
papp env sigma sigT_intro [| a'; pb'; x ; y |])
end
else
begin
let (a, b), (a', b') =
pair_of_array l, pair_of_array l'
in
let sigma, c1 = coerce_unify env sigma a a' in
let sigma, c2 = coerce_unify env sigma b b' in
match c1, c2 with
| None, None -> sigma, None
| _, _ ->
sigma,
Some (fun sigma x ->
let sigma, t1 = papp env sigma prod_proj1 [| a; b; x |] in
let sigma, t2 = papp env sigma prod_proj2 [| a; b; x |] in
let sigma, x = app_opt env sigma c1 t1 in
let sigma, y = app_opt env sigma c2 t2 in
papp env sigma prod_intro [| a'; b'; x ; y |])
end
else
if QInd.equal env i i' && Int.equal len (Array.length l') then
(try subco sigma
with NoSubtacCoercion ->
let sigma, typ = Typing.type_of env sigma c in
let sigma, typ' = Typing.type_of env sigma c' in
coerce_application sigma typ typ' c c' l l')
else
subco sigma
| x, y when EConstr.eq_constr sigma c c' ->
if Int.equal (Array.length l) (Array.length l') then
let sigma, lam_type = Typing.type_of env sigma c in
let sigma, lam_type' = Typing.type_of env sigma c' in
coerce_application sigma lam_type lam_type' c c' l l'
else subco sigma
| _ -> subco sigma)
| _, _ -> subco sigma
and subset_inferred env sigma x y =
match disc_subset env sigma x with
Some (u, p) ->
let sigma, c = coerce_unify env sigma u y in
let f sigma x =
let sigma, t = papp env sigma sig_proj1 [| u; p; x |] in
app_opt env sigma c t
in sigma, Some f
| None ->
match disc_subset env sigma y with
Some (u, p) ->
let sigma, c = coerce_unify env sigma x u in
sigma, Some
(fun sigma x ->
let sigma, cx = app_opt env sigma c x in
let sigma, evar = make_existential ?loc Anonymous env sigma (mkApp (p, [| cx |]))
in
(papp env sigma sig_intro [| u; p; cx; evar |]))
| None ->
raise NoSubtacCoercion
in coerce_unify env sigma x y
let app_coercion env sigma coercion v =
match coercion with
| None -> sigma, v
| Some f ->
let sigma, v' = f sigma v in
let sigma, v' = Typing.solve_evars env sigma v' in
sigma, whd_betaiota env sigma v'
let coerce_itf ?loc env sigma v t c1 =
let sigma, coercion = coerce ?loc env sigma t c1 in
app_coercion env sigma coercion v
let saturate_evd env sigma =
Typeclasses.resolve_typeclasses
~filter:Typeclasses.no_goals ~fail:false env sigma
type coercion_trace =
| IdCoe
| PrimProjCoe of {
proj : Projection.Repr.t;
args : econstr list;
previous : coercion_trace;
}
| Coe of {
head : econstr;
args : econstr list;
previous : coercion_trace;
}
| ProdCoe of { na : Name.t binder_annot; ty : econstr; dom : coercion_trace; body : coercion_trace }
| ReplaceCoe of econstr
let empty_coercion_trace = IdCoe
(* similar to iterated apply_coercion_args *)
let rec reapply_coercions sigma trace c = match trace with
| IdCoe -> c
| ReplaceCoe c -> c
| PrimProjCoe { proj; args; previous } ->
let c = reapply_coercions sigma previous c in
let args = args@[c] in
let head, args = match args with [] -> assert false | hd :: tl -> hd, tl in
applist (mkProj (Projection.make proj false, head), args)
| Coe {head; args; previous} ->
let c = reapply_coercions sigma previous c in
let args = args@[c] in
applist (head, args)
| ProdCoe { na; ty; dom; body } ->
let x = reapply_coercions sigma dom (mkRel 1) in
let c = beta_applist sigma (lift 1 c, [x]) in
let c = reapply_coercions sigma body c in
mkLambda (na, ty, c)
let instance_of_global_constr sigma c =
match kind sigma c with
| Const (_,u) | Ind (_,u) | Construct (_,u) -> EInstance.kind sigma u
| _ -> Univ.Instance.empty
(* Apply coercion path from p to h of type hty; raise NoCoercion if not applicable *)
let apply_coercion env sigma p h hty =
let j, jty, trace, sigma =
List.fold_left
(fun (j,jty,trace,sigma) i ->
let isid = i.coe_is_identity in
let isproj = i.coe_is_projection in
let sigma, c = Evd.fresh_global env sigma i.coe_value in
let u = instance_of_global_constr sigma c in
let typ = EConstr.of_constr (CVars.subst_instance_constr u i.coe_typ) in
let sigma, j', args, jty =
apply_coercion_args env sigma isproj c typ j jty i.coe_param in
let trace =
if isid then trace
else match isproj with
| None -> Coe {head=c;args;previous=trace}
| Some proj ->
let args = List.skipn (Projection.Repr.npars proj) args in
PrimProjCoe {proj; args; previous=trace } in
(if isid then j else j'), jty, trace, sigma)
(h, hty, IdCoe, sigma) p
in sigma, j, jty, trace
let remove_subset env sigma t =
let rec aux v =
let v' = hnf env sigma v in
match disc_subset env sigma v' with
| Some (u, p) ->
aux u
| None -> v
in
aux t
let mu env sigma t =
let rec aux v =
let v' = hnf env sigma v in
match disc_subset env sigma v' with
| Some (u, p) ->
let sigma, (f, ct, trace) = aux u in
let p = hnf_nodelta env sigma p in
let p1 = delayed_force sig_proj1 in
let sigma, p1 = Evd.fresh_global env sigma p1 in
sigma,
(Some (fun sigma x ->
app_opt env sigma
f (mkApp (p1, [| u; p; x |]))),
ct,
Coe {head=p1; args=[u;p]; previous=trace})
| None -> sigma, (None, v, IdCoe)
in aux t
let unify_product env sigma typ =
let t = whd_all env sigma typ in
match EConstr.kind sigma t with
| Prod _ -> Inl sigma
| Evar ev ->
let sigma, _ = Evardefine.define_evar_as_product env sigma ev in
Inl sigma
| _ ->
let sigma, (domain_hole, s) = Evarutil.new_type_evar env sigma Evd.univ_flexible in
let r = ESorts.relevance_of_sort sigma s in
let na = make_annot Anonymous r in
let env' = push_rel Context.(Rel.Declaration.LocalAssum (na, domain_hole)) env in
let sigma, (codomain_hole, _) = Evarutil.new_type_evar env' sigma Evd.univ_flexible in
let prod = mkProd (na, domain_hole, codomain_hole) in
(* NB: unification needs the un-reduced type to do heuristics like canonical structures *)
try Inl (Evarconv.unify env sigma Conversion.CUMUL typ prod)
with PretypeError _ -> Inr t (* return the reduced type to avoid double reducing *)
(* Invariant: if [proj] is [Some] then [args_len < npars]
(and always [args_len = length rev_args + length args in head]) *)
type delayed_app_body = {
mutable head : constr;
mutable rev_args : constr list;
args_len : int;
proj : Projection.Repr.t option
}
let force_app_body ({head;rev_args} as body) =
let head = mkApp (head, Array.rev_of_list rev_args) in
body.head <- head;
body.rev_args <- [];
head
let push_arg {head;rev_args;args_len;proj} arg =
match proj with
| None ->
{
head;
rev_args=arg::rev_args;
args_len=args_len+1;
proj=None;
}
| Some p ->
let npars = Projection.Repr.npars p in
if Int.equal args_len npars then
{
head = mkProj (Projection.make p false, arg);
rev_args=[];
args_len=0;
proj=None;
}
else
{
head;
rev_args=arg::rev_args;
args_len=args_len+1;
proj;
}
let start_app_body sigma head =
let proj = match EConstr.kind sigma head with
| Const (p,_) ->
Structures.PrimitiveProjections.find_opt p
| _ -> None
in
{head; rev_args=[]; args_len=0; proj}
let reapply_coercions_body sigma trace body =
match trace with
| IdCoe -> body
| _ ->
let body = force_app_body body in
let body = reapply_coercions sigma trace body in
start_app_body sigma body
(* Try to coerce to a funclass; raise NoCoercion if not possible *)
let inh_app_fun_core ~program_mode ?(use_coercions=true) env sigma body typ =
match unify_product env sigma typ with
| Inl sigma -> sigma, body, typ, IdCoe
| Inr t ->
try
if not use_coercions then raise NoCoercion;
let p = lookup_path_to_fun_from env sigma typ in
let body = force_app_body body in
let sigma, body, typ, trace = apply_coercion env sigma p body typ in
sigma, start_app_body sigma body, typ, trace
with (Not_found | NoCoercion) as exn ->
let _, info = Exninfo.capture exn in
if program_mode then
try
let sigma, (coercef, t, trace) = mu env sigma t in
let j = {uj_val=force_app_body body; uj_type = typ} in
let sigma, uj_val = app_opt env sigma coercef j.uj_val in
(sigma, start_app_body sigma uj_val, t, trace)
with NoSubtacCoercion | NoCoercion ->
(sigma,body,typ,IdCoe)
else Exninfo.iraise (NoCoercion,info)
(* Try to coerce to a funclass; returns [j] if no coercion is applicable *)
let inh_app_fun ~program_mode ~resolve_tc ?use_coercions env sigma body typ =
try inh_app_fun_core ~program_mode ?use_coercions env sigma body typ
with
| NoCoercion when not resolve_tc
|| not (get_use_typeclasses_for_conversion ()) -> (sigma, body, typ, IdCoe)
| NoCoercion ->
try inh_app_fun_core ~program_mode ?use_coercions env (saturate_evd env sigma) body typ
with NoCoercion -> (sigma, body, typ, IdCoe)
let type_judgment env sigma j =
match EConstr.kind sigma (whd_all env sigma j.uj_type) with
| Sort s -> {utj_val = j.uj_val; utj_type = s }
| _ -> error_not_a_type env sigma j
let inh_tosort_force ?loc env sigma ({ uj_val; uj_type } as j) =
try
let p = lookup_path_to_sort_from env sigma uj_type in
let sigma, uj_val, uj_type,_trace = apply_coercion env sigma p uj_val uj_type in
let j2 = Environ.on_judgment_type (whd_evar sigma) { uj_val ; uj_type } in
(sigma, type_judgment env sigma j2)
with Not_found | NoCoercion ->
error_not_a_type ?loc env sigma j
let inh_coerce_to_sort ?loc ?(use_coercions=true) env sigma j =
let typ = whd_all env sigma j.uj_type in
match EConstr.kind sigma typ with
| Sort s -> (sigma,{ utj_val = j.uj_val; utj_type = s })
| Evar ev ->
let (sigma,s) = Evardefine.define_evar_as_sort env sigma ev in
(sigma,{ utj_val = j.uj_val; utj_type = s })
| _ ->
if use_coercions then inh_tosort_force ?loc env sigma j
else error_not_a_type ?loc env sigma j
let inh_coerce_to_base ?loc ~program_mode env sigma j =
if program_mode then
let sigma, (ct, typ', _trace) = mu env sigma j.uj_type in
let sigma, uj_val = app_coercion env sigma ct j.uj_val in
let res = { uj_val; uj_type = typ' } in
sigma, res
else (sigma, j)
let class_has_args = function
| CL_FUN
| CL_SORT -> false
| _ -> true
let lookup_path_between_class_reflexive (c1,c2) =
if c1 = c2 then []
else lookup_path_between_class (c1,c2)
(* We find a path to a common class such that the path from src_expected is
reversible (the casted term is unknown but inferrable via unification,
eg CS inference) *)
let lookup_reversible_path_to_common_point env sigma ~src_expected ~src_inferred =
let _, c_expected = class_of env sigma src_expected in
let _, c_inferred = class_of env sigma src_inferred in
let reachable_from_expected = reachable_from c_expected in
let reachable_from_inferred = reachable_from c_inferred in
let r = ClTypSet.(elements (inter reachable_from_expected reachable_from_inferred)) in
(* XXX this order relation is not total ... *)
let r = List.sort (fun c1 c2 -> if ClTypSet.mem c1 (reachable_from c2) then 1 else -1) r in
let r = (if ClTypSet.mem c_inferred reachable_from_expected then [c_inferred] else []) @ r in
(* This is unneeded since there is a dedicated case in inh_coerce_to_fail:
let r = (if ClTypSet.mem c_expected reachable_from_inferred then [c_expected] else []) @ r in *)
let rec aux = function
| [] -> raise Not_found
| c :: cs ->
let reversible = lookup_path_between_class_reflexive (c_expected,c) in
if path_is_reversible reversible then
let direct = lookup_path_between_class_reflexive (c_inferred,c) in
class_has_args c_expected, class_has_args c_inferred, reversible, direct
else
aux cs
in
aux r
let inh_coerce_to_fail ?(use_coercions=true) flags env sigma rigidonly v v_ty target_type =
if not use_coercions || (rigidonly && not (Heads.is_rigid env sigma target_type && Heads.is_rigid env sigma v_ty))
then
raise NoCoercion
else
try
let sigma, v', v'_ty, trace =
try
(* 1 path c of direct coercions *)
let c = lookup_path_between env sigma ~src:v_ty ~tgt:target_type in
apply_coercion env sigma c v v_ty
with Not_found ->
(* 2 paths: one of direct coercions, one of reversible coercions *)
let target_type_has_args, v_ty_has_args, reversible, direct =
lookup_reversible_path_to_common_point env sigma ~src_expected:target_type ~src_inferred:v_ty in
if not (v_ty_has_args || target_type_has_args) then raise Not_found;
let sigma, x = Evarutil.new_evar env sigma target_type in
let sigma, rev_x, _, _ = apply_coercion env sigma reversible x target_type in
let sigma, direct_v, _, _ = apply_coercion env sigma direct v v_ty in
let sigma = unify_leq_delay ~flags env sigma direct_v rev_x in
(try let _ = Evarutil.head_evar sigma (whd_evar sigma x) in raise Not_found
with NoHeadEvar -> ()); (* fail if x is stil an unresolved evar *)
sigma, x, target_type, ReplaceCoe x
in
unify_leq_delay ~flags env sigma v'_ty target_type, v', trace
with (Evarconv.UnableToUnify _ | Not_found) as exn ->
let _, info = Exninfo.capture exn in
Exninfo.iraise (NoCoercion,info)
let default_flags_of env =
default_flags_of TransparentState.full
let rec inh_conv_coerce_to_fail ?loc ?use_coercions env sigma ?(flags=default_flags_of env) rigidonly v t c1 =
try (unify_leq_delay ~flags env sigma t c1, v, IdCoe)
with UnableToUnify (best_failed_sigma,e) ->
try inh_coerce_to_fail ?use_coercions flags env sigma rigidonly v t c1
with NoCoercion as exn ->
let _, info = Exninfo.capture exn in
match
EConstr.kind sigma (whd_all env sigma t),
EConstr.kind sigma (whd_all env sigma c1)
with
| Prod (name,t1,t2), Prod (_,u1,u2) ->
(* Conversion did not work, we may succeed with a coercion. *)
(* We eta-expand (hence possibly modifying the original term!) *)
(* and look for a coercion c:u1->t1 s.t. fun x:u1 => v' (c x)) *)
(* has type forall (x:u1), u2 (with v' recursively obtained) *)
(* Note: we retype the term because template polymorphism may have *)
(* weakened its type *)
let name = map_annot (function
| Anonymous -> Name Namegen.default_dependent_ident
| na -> na) name in
let open Context.Rel.Declaration in
let env1 = push_rel (LocalAssum (name,u1)) env in
let (sigma, v1, trace1) =
inh_conv_coerce_to_fail ?loc ?use_coercions env1 sigma rigidonly
(mkRel 1) (lift 1 u1) (lift 1 t1) in
let v2 = beta_applist sigma (lift 1 v,[v1]) in
let t2 = Retyping.get_type_of env1 sigma v2 in
let (sigma,v2',trace2) = inh_conv_coerce_to_fail ?loc ?use_coercions env1 sigma rigidonly v2 t2 u2 in
let trace = ProdCoe { na=name; ty=u1; dom=trace1; body=trace2 } in
(sigma, mkLambda (name, u1, v2'), trace)
| _ ->
Exninfo.iraise (NoCoercionNoUnifier (best_failed_sigma,e), info)
(* Look for cj' obtained from cj by inserting coercions, s.t. cj'.typ = t *)
let inh_conv_coerce_to_gen ?loc ~program_mode ~resolve_tc ?use_coercions rigidonly env sigma ?(flags=default_flags_of env) cj t =
let (sigma, val', otrace) =
try
let (sigma, val', trace) = inh_conv_coerce_to_fail ?loc ?use_coercions env sigma ~flags rigidonly cj.uj_val cj.uj_type t in
(sigma, val', Some trace)
with NoCoercionNoUnifier (best_failed_sigma,e) as exn ->
let _, info = Exninfo.capture exn in
try
if program_mode then
let (sigma, val') = coerce_itf ?loc env sigma cj.uj_val cj.uj_type t in
(sigma, val', None)
else Exninfo.iraise (NoSubtacCoercion,info)
with
| NoSubtacCoercion as exn when not resolve_tc || not (get_use_typeclasses_for_conversion ()) ->
let _, info = Exninfo.capture exn in
error_actual_type ?loc ~info env best_failed_sigma cj t e
| NoSubtacCoercion as exn ->
let _, info = Exninfo.capture exn in
let sigma' = saturate_evd env sigma in
try
if sigma' == sigma then
error_actual_type ?loc ~info env best_failed_sigma cj t e
else
let sigma = sigma' in
let (sigma, val', trace) = inh_conv_coerce_to_fail ?loc ?use_coercions env sigma rigidonly cj.uj_val cj.uj_type t in
(sigma, val', Some trace)
with NoCoercionNoUnifier (_sigma,_error) as exn ->
let _, info = Exninfo.capture exn in
error_actual_type ?loc ~info env best_failed_sigma cj t e
in
(sigma,{ uj_val = val'; uj_type = t },otrace)
let inh_conv_coerce_to_gen ?loc ~program_mode ~resolve_tc ?use_coercions rigidonly env sigma ?flags cj t =
try inh_conv_coerce_to_gen ?loc ~program_mode ~resolve_tc ?use_coercions rigidonly env sigma ?flags cj t
with e when Option.has_some loc ->
let _, info as iexn = Exninfo.capture e in
match Loc.get_loc info with
| Some _ -> Exninfo.iraise iexn
| None -> Exninfo.iraise (e, Loc.add_loc info (Option.get loc))
let inh_conv_coerce_to ?loc ~program_mode ~resolve_tc ?use_coercions env sigma ?flags =
inh_conv_coerce_to_gen ?loc ~program_mode ~resolve_tc ?use_coercions false ?flags env sigma
let inh_conv_coerce_rigid_to ?loc ~program_mode ~resolve_tc ?use_coercions env sigma ?flags =
inh_conv_coerce_to_gen ?loc ~program_mode ~resolve_tc ?use_coercions true ?flags env sigma