-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretyping.ml
1523 lines (1413 loc) · 64 KB
/
pretyping.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* This file contains the syntax-directed part of the type inference
algorithm introduced by Murthy in Coq V5.10, 1995; the type
inference algorithm was initially developed in a file named trad.ml
which formerly contained a simple concrete-to-abstract syntax
translation function introduced in CoC V4.10 for implementing the
"exact" tactic, 1989 *)
(* Support for typing term in Ltac environment by David Delahaye, 2000 *)
(* Type inference algorithm made a functor of the coercion and
pattern-matching compilation by Matthieu Sozeau, March 2006 *)
(* Fixpoint guard index computation by Pierre Letouzey, July 2007 *)
(* Structural maintainer: Hugo Herbelin *)
(* Secondary maintenance: collective *)
open Pp
open CErrors
open Util
open Names
open Evd
open Constr
open Context
open Termops
open Environ
open EConstr
open Vars
open Reductionops
open Type_errors
open Typing
open Evarutil
open Evardefine
open Pretype_errors
open Glob_term
open Glob_ops
open GlobEnv
open Evarconv
module NamedDecl = Context.Named.Declaration
type typing_constraint = IsType | OfType of types | WithoutTypeConstraint
let (!!) env = GlobEnv.env env
let bidi_hints =
Summary.ref (GlobRef.Map.empty : int GlobRef.Map.t) ~name:"bidirectionalityhints"
let add_bidirectionality_hint gr n =
bidi_hints := GlobRef.Map.add gr n !bidi_hints
let get_bidirectionality_hint gr =
GlobRef.Map.find_opt gr !bidi_hints
let clear_bidirectionality_hint gr =
bidi_hints := GlobRef.Map.remove gr !bidi_hints
(************************************************************************)
(* This concerns Cases *)
open Inductive
open Inductiveops
(************************************************************************)
(* An auxiliary function for searching for fixpoint guard indexes *)
exception Found of int array
let nf_fix sigma (nas, cs, ts) =
let inj c = EConstr.to_constr ~abort_on_undefined_evars:false sigma c in
(nas, Array.map inj cs, Array.map inj ts)
let search_guard ?loc env possible_indexes fixdefs =
(* Standard situation with only one possibility for each fix. *)
(* We treat it separately in order to get proper error msg. *)
let is_singleton = function [_] -> true | _ -> false in
if List.for_all is_singleton possible_indexes then
let indexes = Array.of_list (List.map List.hd possible_indexes) in
let fix = ((indexes, 0),fixdefs) in
(try check_fix env fix
with reraise ->
let (e, info) = Exninfo.capture reraise in
let info = Option.cata (fun loc -> Loc.add_loc info loc) info loc in
Exninfo.iraise (e, info));
indexes
else
(* we now search recursively among all combinations *)
(try
List.iter
(fun l ->
let indexes = Array.of_list l in
let fix = ((indexes, 0),fixdefs) in
(* spiwack: We search for a unspecified structural
argument under the assumption that we need to check the
guardedness condition (otherwise the first inductive argument
will be chosen). A more robust solution may be to raise an
error when totality is assumed but the strutural argument is
not specified. *)
try
let flags = { (typing_flags env) with Declarations.check_guarded = true } in
let env = Environ.set_typing_flags flags env in
check_fix env fix; raise (Found indexes)
with TypeError _ -> ())
(List.combinations possible_indexes);
let errmsg = "Cannot guess decreasing argument of fix." in
user_err ?loc (Pp.str errmsg)
with Found indexes -> indexes)
let esearch_guard ?loc env sigma indexes fix =
let fix = nf_fix sigma fix in
try search_guard ?loc env indexes fix
with TypeError (env,err) ->
raise (PretypeError (env,sigma,TypingError (map_ptype_error of_constr err)))
(* To force universe name declaration before use *)
let { Goptions.get = is_strict_universe_declarations } =
Goptions.declare_bool_option_and_ref
~key:["Strict";"Universe";"Declaration"]
~value:true
()
(** Miscellaneous interpretation functions *)
let universe_level_name evd ({CAst.v=id} as lid) =
try evd, Evd.universe_of_name evd id
with Not_found ->
if not (is_strict_universe_declarations ()) then
new_univ_level_variable ?loc:lid.CAst.loc ~name:id univ_rigid evd
else user_err ?loc:lid.CAst.loc
(Pp.(str "Undeclared universe: " ++ Id.print id ++ str "."))
let level_name sigma = function
| GSProp | GProp -> None
| GSet -> Some (sigma, Univ.Level.set)
| GUniv u -> Some (sigma, u)
| GRawUniv u ->
let sigma = try Evd.add_global_univ sigma u with UGraph.AlreadyDeclared -> sigma in
Some (sigma, u)
| GLocalUniv l ->
let sigma, u = universe_level_name sigma l in
Some (sigma, u)
let sort_info ?loc sigma l = match l with
| [] -> assert false
| [GSProp, 0] -> sigma, Sorts.sprop
| [GProp, 0] -> sigma, Sorts.prop
| (u, n) :: us ->
let open Pp in
let get_level sigma u n = match level_name sigma u with
| None ->
user_err ?loc
(str "Non-Set small universes cannot be used in algebraic expressions.")
| Some (sigma, u) ->
let u = Univ.Universe.make u in
let u = match n with
| 0 -> u
| 1 -> Univ.Universe.super u
| n ->
user_err ?loc
(str "Cannot interpret universe increment +" ++ int n ++ str ".")
in
(sigma, u)
in
let fold (sigma, u) (l, n) =
let sigma, u' = get_level sigma l n in
(sigma, Univ.Universe.sup u u')
in
let (sigma, u) = get_level sigma u n in
let (sigma, u) = List.fold_left fold (sigma, u) us in
sigma, Sorts.sort_of_univ u
type inference_hook = env -> evar_map -> Evar.t -> (evar_map * constr) option
type use_typeclasses = NoUseTC | UseTCForConv | UseTC
type inference_flags = {
use_coercions : bool;
use_typeclasses : use_typeclasses;
solve_unification_constraints : bool;
fail_evar : bool;
expand_evars : bool;
program_mode : bool;
polymorphic : bool;
}
type pretype_flags = {
poly : bool;
resolve_tc : bool;
program_mode : bool;
use_coercions : bool;
}
(* Compute the set of still-undefined initial evars up to restriction
(e.g. clearing) and the set of yet-unsolved evars freshly created
in the extension [sigma'] of [sigma] (excluding the restrictions of
the undefined evars of [sigma] to be freshly created evars of
[sigma']). Otherwise said, we partition the undefined evars of
[sigma'] into those already in [sigma] or deriving from an evar in
[sigma] by restriction, and the evars properly created in [sigma'] *)
type frozen =
| FrozenId of undefined evar_info Evar.Map.t
(** No pending evars. We do not put a set here not to reallocate like crazy,
but the actual data of the map is not used, only keys matter. All
functions operating on this type must have the same behaviour on
[FrozenId map] and [FrozenProgress (Evar.Map.domain map, Evar.Set.empty)] *)
| FrozenProgress of (Evar.Set.t * Evar.Set.t) Lazy.t
(** Proper partition of the evar map as described above. *)
let frozen_and_pending_holes (sigma, sigma') =
let undefined0 = Option.cata Evd.undefined_map Evar.Map.empty sigma in
(* Fast path when the undefined evars where not modified *)
if undefined0 == Evd.undefined_map sigma' then
FrozenId undefined0
else
let data = lazy begin
let add_derivative_of evk evi acc =
match advance sigma' evk with None -> acc | Some evk' -> Evar.Set.add evk' acc in
let frozen = Evar.Map.fold add_derivative_of undefined0 Evar.Set.empty in
let fold evk _ accu = if not (Evar.Set.mem evk frozen) then Evar.Set.add evk accu else accu in
let pending = Evd.fold_undefined fold sigma' Evar.Set.empty in
(frozen, pending)
end in
FrozenProgress data
let filter_frozen frozen = match frozen with
| FrozenId map -> fun evk -> Evar.Map.mem evk map
| FrozenProgress (lazy (frozen, _)) -> fun evk -> Evar.Set.mem evk frozen
let typeclasses_filter ~program_mode frozen =
if program_mode
then (fun evk evi -> Typeclasses.no_goals_or_obligations evk evi && not (filter_frozen frozen evk))
else (fun evk evi -> Typeclasses.no_goals evk evi && not (filter_frozen frozen evk))
let apply_typeclasses ~program_mode ~fail_evar env sigma frozen =
let sigma = Typeclasses.resolve_typeclasses
~filter:(typeclasses_filter ~program_mode frozen)
~fail:fail_evar env sigma in
let sigma = if program_mode then (* Try optionally solving the obligations *)
Typeclasses.resolve_typeclasses
~filter:(fun evk evi -> Typeclasses.all_evars evk evi && not (filter_frozen frozen evk)) ~fail:false env sigma
else sigma in
sigma
let apply_inference_hook (hook : inference_hook) env sigma frozen = match frozen with
| FrozenId _ -> sigma
| FrozenProgress (lazy (_, pending)) ->
Evar.Set.fold (fun evk sigma ->
if Evd.is_undefined sigma evk (* in particular not defined by side-effect *)
then
match hook env sigma evk with
| Some (sigma, c) ->
Evd.define evk c sigma
| None -> sigma
else
sigma) pending sigma
let apply_heuristics env sigma =
(* Resolve eagerly, potentially making wrong choices *)
let flags = default_flags_of (Conv_oracle.get_transp_state (Environ.oracle env)) in
try solve_unif_constraints_with_heuristics ~flags env sigma
with e when CErrors.noncritical e -> sigma
let check_typeclasses_instances_are_solved ~program_mode env sigma frozen =
let tcs = Typeclasses.get_filtered_typeclass_evars
(typeclasses_filter ~program_mode frozen)
sigma
in
if not (Evar.Set.is_empty tcs) then begin
Typeclasses.error_unresolvable env sigma tcs
end
let check_extra_evars_are_solved env current_sigma frozen = match frozen with
| FrozenId _ -> ()
| FrozenProgress (lazy (_, pending)) ->
Evar.Set.iter
(fun evk ->
if not (Evd.is_defined current_sigma evk) then
let (loc,k) = evar_source (Evd.find_undefined current_sigma evk) in
match k with
| Evar_kinds.ImplicitArg (gr, (i, id), false) -> ()
| _ ->
error_unsolvable_implicit ?loc env current_sigma evk None) pending
(* [check_evars] fails if some unresolved evar remains *)
let check_evars env ?initial sigma c =
let rec proc_rec c =
match EConstr.kind sigma c with
| Evar (evk, _) ->
(match initial with
| Some initial when Evd.mem initial evk -> ()
| _ ->
let EvarInfo evi = Evd.find sigma evk in
let (loc,k) = evar_source evi in
begin match k with
| Evar_kinds.ImplicitArg (gr, (i, id), false) -> ()
| _ -> Pretype_errors.error_unsolvable_implicit ?loc env sigma evk None
end)
| _ -> EConstr.iter sigma proc_rec c
in proc_rec c
let check_evars_are_solved ~program_mode env sigma frozen =
check_typeclasses_instances_are_solved ~program_mode env sigma frozen;
check_problems_are_solved env sigma;
check_extra_evars_are_solved env sigma frozen
(* Try typeclasses, hooks, unification heuristics ... *)
let solve_remaining_evars ?hook (flags : inference_flags) env ?initial sigma =
let program_mode = flags.program_mode in
let frozen = frozen_and_pending_holes (initial, sigma) in
let sigma =
match flags.use_typeclasses with
| UseTC -> apply_typeclasses ~program_mode ~fail_evar:false env sigma frozen
| NoUseTC | UseTCForConv -> sigma
in
let frozen = frozen_and_pending_holes (initial, sigma) in
let sigma = match hook with
| None -> sigma
| Some hook -> apply_inference_hook hook env sigma frozen
in
let sigma = if flags.solve_unification_constraints
then apply_heuristics env sigma
else sigma
in
if flags.fail_evar then check_evars_are_solved ~program_mode env sigma frozen;
sigma
let check_evars_are_solved ~program_mode env ?initial current_sigma =
let frozen = frozen_and_pending_holes (initial, current_sigma) in
check_evars_are_solved ~program_mode env current_sigma frozen
let process_inference_flags flags env initial (sigma,c,cty) =
let sigma = solve_remaining_evars flags env ~initial sigma in
let c = if flags.expand_evars then nf_evar sigma c else c in
sigma,c,cty
let adjust_evar_source sigma na c =
match na, kind sigma c with
| Name id, Evar (evk,args) ->
let EvarInfo evi = Evd.find sigma evk in
begin match Evd.evar_source evi with
| loc, Evar_kinds.QuestionMark {
Evar_kinds.qm_obligation=b;
Evar_kinds.qm_name=Anonymous;
Evar_kinds.qm_record_field=recfieldname;
} ->
let src = (loc,Evar_kinds.QuestionMark {
Evar_kinds.qm_obligation=b;
Evar_kinds.qm_name=na;
Evar_kinds.qm_record_field=recfieldname;
}) in
let (sigma, evk') = restrict_evar sigma evk (evar_filter evi) ~src None in
sigma, mkEvar (evk',args)
| _ -> sigma, c
end
| _, _ -> sigma, c
(* coerce to tycon if any *)
let inh_conv_coerce_to_tycon ?loc ~flags:{ program_mode; resolve_tc; use_coercions } env sigma j = function
| None -> sigma, j, Some Coercion.empty_coercion_trace
| Some t ->
Coercion.inh_conv_coerce_to ?loc ~program_mode ~resolve_tc ~use_coercions !!env sigma j t
let check_instance subst = function
| [] -> ()
| (CAst.{loc;v=id},_) :: _ ->
if List.mem_assoc id subst then
user_err ?loc (Id.print id ++ str "appears more than once.")
else
user_err ?loc (str "No such variable in the signature of the existential variable: " ++ Id.print id ++ str ".")
(* used to enforce a name in Lambda when the type constraints itself
is named, hence possibly dependent *)
let orelse_name name name' = match name with
| Anonymous -> name'
| _ -> name
let pretype_id pretype loc env sigma id =
(* Look for the binder of [id] *)
try
let (n,_,typ) = lookup_rel_id id (rel_context !!env) in
sigma, { uj_val = mkRel n; uj_type = lift n typ }
with Not_found ->
try
GlobEnv.interp_ltac_variable ?loc (fun env -> pretype env sigma) env sigma id
with Not_found ->
(* Check if [id] is a section or goal variable *)
try
sigma, { uj_val = mkVar id; uj_type = NamedDecl.get_type (lookup_named id !!env) }
with Not_found ->
(* [id] not found, standard error message *)
error_var_not_found ?loc !!env sigma id
(*************************************************************************)
(* Main pretyping function *)
let glob_level ?loc evd : glob_level -> _ = function
| UAnonymous {rigid} -> new_univ_level_variable ?loc (if rigid then univ_rigid else univ_flexible) evd
| UNamed s ->
match level_name evd s with
| None ->
user_err ?loc
(str "Universe instances cannot contain non-Set small levels, polymorphic" ++
str " universe instances must be greater or equal to Set.");
| Some r -> r
let instance ?loc evd l =
let evd, l' =
List.fold_left
(fun (evd, univs) l ->
let evd, l = glob_level ?loc evd l in
(evd, l :: univs)) (evd, [])
l
in
evd, Some (Univ.Instance.of_array (Array.of_list (List.rev l')))
let pretype_global ?loc rigid env evd gr us =
let evd, instance =
match us with
| None -> evd, None
| Some l -> instance ?loc evd l
in
Evd.fresh_global ?loc ~rigid ?names:instance !!env evd gr
let pretype_ref ?loc sigma env ref us =
match ref with
| GlobRef.VarRef id ->
(* Section variable *)
(try
let ty = NamedDecl.get_type (lookup_named id !!env) in
(match us with
| None | Some [] -> ()
| Some us ->
let open UnivGen in
Loc.raise ?loc (UniverseLengthMismatch {
actual = List.length us;
expect = 0;
}));
sigma, make_judge (mkVar id) ty
with Not_found ->
(* This may happen if env is a goal env and section variables have
been cleared - section variables should be different from goal
variables *)
Pretype_errors.error_var_not_found ?loc !!env sigma id)
| ref ->
let sigma, c = pretype_global ?loc univ_flexible env sigma ref us in
let sigma, ty = type_of !!env sigma c in
sigma, make_judge c ty
let sort ?loc evd : glob_sort -> _ = function
| UAnonymous {rigid} ->
let evd, l = new_univ_level_variable ?loc (if rigid then univ_rigid else univ_flexible) evd in
evd, ESorts.make (Sorts.sort_of_univ (Univ.Universe.make l))
| UNamed (q, l) ->
(* No user-facing syntax for qualities *)
let () = assert (Option.is_empty q) in
let evd, s = sort_info ?loc evd l in
evd, ESorts.make s
let judge_of_sort ?loc evd s =
let judge =
{ uj_val = mkSort s; uj_type = mkSort (ESorts.super evd s) }
in
evd, judge
let pretype_sort ?loc sigma s =
match s with
| UNamed (None, [GSProp, 0]) -> sigma, judge_of_sprop
| UNamed (None, [GProp, 0]) -> sigma, judge_of_prop
| UNamed (None, [GSet, 0]) -> sigma, judge_of_set
| _ ->
let sigma, s = sort ?loc sigma s in
judge_of_sort ?loc sigma s
let new_typed_evar env sigma ?naming ~src tycon =
match tycon with
| Some ty ->
let sigma, c = new_evar env sigma ~src ?naming ty in
sigma, c, ty
| None ->
let sigma, ty = new_type_evar env sigma ~src in
let sigma, c = new_evar env sigma ~src ?naming ty in
let evk = fst (destEvar sigma c) in
let ido = Evd.evar_ident evk sigma in
let src = (fst src,Evar_kinds.EvarType (ido,evk)) in
let sigma = update_source sigma (fst (destEvar sigma ty)) src in
sigma, c, ty
let mark_obligation_evar sigma k evc =
match k with
| Evar_kinds.QuestionMark _
| Evar_kinds.ImplicitArg (_, _, false) ->
Evd.set_obligation_evar sigma (fst (destEvar sigma evc))
| _ -> sigma
type 'a pretype_fun = ?loc:Loc.t -> flags:pretype_flags -> type_constraint -> GlobEnv.t -> evar_map -> evar_map * 'a
type pretyper = {
pretype_ref : pretyper -> GlobRef.t * glob_level list option -> unsafe_judgment pretype_fun;
pretype_var : pretyper -> Id.t -> unsafe_judgment pretype_fun;
pretype_evar : pretyper -> existential_name CAst.t * (lident * glob_constr) list -> unsafe_judgment pretype_fun;
pretype_patvar : pretyper -> Evar_kinds.matching_var_kind -> unsafe_judgment pretype_fun;
pretype_app : pretyper -> glob_constr * glob_constr list -> unsafe_judgment pretype_fun;
pretype_proj : pretyper -> (Constant.t * glob_level list option) * glob_constr list * glob_constr -> unsafe_judgment pretype_fun;
pretype_lambda : pretyper -> Name.t * binding_kind * glob_constr * glob_constr -> unsafe_judgment pretype_fun;
pretype_prod : pretyper -> Name.t * binding_kind * glob_constr * glob_constr -> unsafe_judgment pretype_fun;
pretype_letin : pretyper -> Name.t * glob_constr * glob_constr option * glob_constr -> unsafe_judgment pretype_fun;
pretype_cases : pretyper -> Constr.case_style * glob_constr option * tomatch_tuples * cases_clauses -> unsafe_judgment pretype_fun;
pretype_lettuple : pretyper -> Name.t list * (Name.t * glob_constr option) * glob_constr * glob_constr -> unsafe_judgment pretype_fun;
pretype_if : pretyper -> glob_constr * (Name.t * glob_constr option) * glob_constr * glob_constr -> unsafe_judgment pretype_fun;
pretype_rec : pretyper -> glob_fix_kind * Id.t array * glob_decl list array * glob_constr array * glob_constr array -> unsafe_judgment pretype_fun;
pretype_sort : pretyper -> glob_sort -> unsafe_judgment pretype_fun;
pretype_hole : pretyper -> Evar_kinds.t * Namegen.intro_pattern_naming_expr -> unsafe_judgment pretype_fun;
pretype_genarg : pretyper -> Genarg.glob_generic_argument -> unsafe_judgment pretype_fun;
pretype_cast : pretyper -> glob_constr * cast_kind option * glob_constr -> unsafe_judgment pretype_fun;
pretype_int : pretyper -> Uint63.t -> unsafe_judgment pretype_fun;
pretype_float : pretyper -> Float64.t -> unsafe_judgment pretype_fun;
pretype_array : pretyper -> glob_level list option * glob_constr array * glob_constr * glob_constr -> unsafe_judgment pretype_fun;
pretype_type : pretyper -> glob_constr -> unsafe_type_judgment pretype_fun;
}
(** Tie the loop *)
let eval_pretyper self ~flags tycon env sigma t =
let loc = t.CAst.loc in
match DAst.get t with
| GRef (ref,u) ->
self.pretype_ref self (ref, u) ?loc ~flags tycon env sigma
| GVar id ->
self.pretype_var self id ?loc ~flags tycon env sigma
| GEvar (evk, args) ->
self.pretype_evar self (evk, args) ?loc ~flags tycon env sigma
| GPatVar knd ->
self.pretype_patvar self knd ?loc ~flags tycon env sigma
| GApp (c, args) ->
self.pretype_app self (c, args) ?loc ~flags tycon env sigma
| GProj (hd, args, c) ->
self.pretype_proj self (hd, args, c) ?loc ~flags tycon env sigma
| GLambda (na, bk, t, c) ->
self.pretype_lambda self (na, bk, t, c) ?loc ~flags tycon env sigma
| GProd (na, bk, t, c) ->
self.pretype_prod self (na, bk, t, c) ?loc ~flags tycon env sigma
| GLetIn (na, b, t, c) ->
self.pretype_letin self (na, b, t, c) ?loc ~flags tycon env sigma
| GCases (st, c, tm, cl) ->
self.pretype_cases self (st, c, tm, cl) ?loc ~flags tycon env sigma
| GLetTuple (na, b, t, c) ->
self.pretype_lettuple self (na, b, t, c) ?loc ~flags tycon env sigma
| GIf (c, r, t1, t2) ->
self.pretype_if self (c, r, t1, t2) ?loc ~flags tycon env sigma
| GRec (knd, nas, decl, c, t) ->
self.pretype_rec self (knd, nas, decl, c, t) ?loc ~flags tycon env sigma
| GSort s ->
self.pretype_sort self s ?loc ~flags tycon env sigma
| GHole (knd, nam) ->
self.pretype_hole self (knd, nam) ?loc ~flags tycon env sigma
| GGenarg arg ->
self.pretype_genarg self arg ?loc ~flags tycon env sigma
| GCast (c, k, t) ->
self.pretype_cast self (c, k, t) ?loc ~flags tycon env sigma
| GInt n ->
self.pretype_int self n ?loc ~flags tycon env sigma
| GFloat f ->
self.pretype_float self f ?loc ~flags tycon env sigma
| GArray (u,t,def,ty) ->
self.pretype_array self (u,t,def,ty) ?loc ~flags tycon env sigma
let eval_type_pretyper self ~flags tycon env sigma t =
self.pretype_type self t ~flags tycon env sigma
let pretype_instance self ~flags env sigma loc hyps evk update =
let f decl (subst,update,sigma) =
let id = NamedDecl.get_id decl in
let b = Option.map (replace_vars sigma subst) (NamedDecl.get_value decl) in
let t = replace_vars sigma subst (NamedDecl.get_type decl) in
let check_body sigma id c =
match b, c with
| Some b, Some c ->
if not (is_conv !!env sigma b c) then
user_err ?loc (str "Cannot interpret " ++
pr_existential_key !!env sigma evk ++
strbrk " in current context: binding for " ++ Id.print id ++
strbrk " is not convertible to its expected definition (cannot unify " ++
quote (Termops.Internal.print_constr_env !!env sigma b) ++
strbrk " and " ++
quote (Termops.Internal.print_constr_env !!env sigma c) ++
str ").")
| Some b, None ->
user_err ?loc (str "Cannot interpret " ++
pr_existential_key !!env sigma evk ++
strbrk " in current context: " ++ Id.print id ++
strbrk " should be bound to a local definition.")
| None, _ -> () in
let check_type sigma id t' =
if not (is_conv !!env sigma t t') then
user_err ?loc (str "Cannot interpret " ++
pr_existential_key !!env sigma evk ++
strbrk " in current context: binding for " ++ Id.print id ++
strbrk " is not well-typed.") in
let sigma, c, update =
try
let c = snd (List.find (fun (CAst.{v=id'},c) -> Id.equal id id') update) in
let sigma, c = eval_pretyper self ~flags (mk_tycon t) env sigma c in
check_body sigma id (Some c.uj_val);
sigma, c.uj_val, List.remove_first (fun (CAst.{v=id'},_) -> Id.equal id id') update
with Not_found ->
try
let (n,b',t') = lookup_rel_id id (rel_context !!env) in
check_type sigma id (lift n t');
check_body sigma id (Option.map (lift n) b');
sigma, mkRel n, update
with Not_found ->
try
let decl = lookup_named id !!env in
check_type sigma id (NamedDecl.get_type decl);
check_body sigma id (NamedDecl.get_value decl);
sigma, mkVar id, update
with Not_found ->
user_err ?loc (str "Cannot interpret " ++
pr_existential_key !!env sigma evk ++
str " in current context: no binding for " ++ Id.print id ++ str ".") in
((id,c)::subst, update, sigma) in
let subst,inst,sigma = List.fold_right f hyps ([],update,sigma) in
check_instance subst inst;
sigma, List.map snd subst
module Default =
struct
let discard_trace (sigma,t,otrace) = sigma, t
let pretype_ref self (ref, u) =
fun ?loc ~flags tycon env sigma ->
let sigma, t_ref = pretype_ref ?loc sigma env ref u in
discard_trace @@ inh_conv_coerce_to_tycon ?loc ~flags env sigma t_ref tycon
let pretype_var self id =
fun ?loc ~flags tycon env sigma ->
let pretype tycon env sigma t = eval_pretyper self ~flags tycon env sigma t in
let sigma, t_id = pretype_id (fun e r t -> pretype tycon e r t) loc env sigma id in
discard_trace @@ inh_conv_coerce_to_tycon ?loc ~flags env sigma t_id tycon
let pretype_evar self (CAst.{v=id;loc=locid}, inst) ?loc ~flags tycon env sigma =
(* Ne faudrait-il pas s'assurer que hyps est bien un
sous-contexte du contexte courant, et qu'il n'y a pas de Rel "caché" *)
let id = interp_ltac_id env id in
let evk =
try Evd.evar_key id sigma
with Not_found -> error_evar_not_found ?loc:locid !!env sigma id in
let EvarInfo evi = Evd.find sigma evk in
let hyps = evar_filtered_context evi in
let sigma, args = pretype_instance self ~flags env sigma loc hyps evk inst in
let c = mkLEvar sigma (evk, args) in
let j = Retyping.get_judgment_of !!env sigma c in
discard_trace @@ inh_conv_coerce_to_tycon ?loc ~flags env sigma j tycon
let pretype_patvar self kind ?loc ~flags tycon env sigma =
let k = Evar_kinds.MatchingVar kind in
let sigma, uj_val, uj_type = new_typed_evar env sigma ~src:(loc,k) tycon in
sigma, { uj_val; uj_type }
let pretype_hole self (k, naming) ?loc ~flags tycon env sigma =
let open Namegen in
let naming = match naming with
| IntroIdentifier id -> IntroIdentifier (interp_ltac_id env id)
| IntroAnonymous -> IntroAnonymous
| IntroFresh id -> IntroFresh (interp_ltac_id env id) in
let sigma, uj_val, uj_type = new_typed_evar env sigma ~src:(loc,k) ~naming tycon in
let sigma = if flags.program_mode then mark_obligation_evar sigma k uj_val else sigma in
sigma, { uj_val; uj_type }
let pretype_genarg self arg ?loc ~flags tycon env sigma =
let j, sigma = GlobEnv.interp_glob_genarg ?loc ~poly:flags.poly env sigma tycon arg in
sigma, j
let pretype_rec self (fixkind, names, bl, lar, vdef) =
fun ?loc ~flags tycon env sigma ->
let open Context.Rel.Declaration in
let pretype tycon env sigma c = eval_pretyper self ~flags tycon env sigma c in
let pretype_type tycon env sigma c = eval_type_pretyper self ~flags tycon env sigma c in
let vars = VarSet.variables (Global.env ()) in
let hypnaming = if flags.program_mode then ProgramNaming vars else RenameExistingBut vars in
let rec type_bl env sigma ctxt = function
| [] -> sigma, ctxt
| (na,bk,None,ty)::bl ->
let sigma, ty' = pretype_type empty_valcon env sigma ty in
let rty' = ESorts.relevance_of_sort sigma ty'.utj_type in
let dcl = LocalAssum (make_annot na rty', ty'.utj_val) in
let dcl', env = push_rel ~hypnaming sigma dcl env in
type_bl env sigma (Context.Rel.add dcl' ctxt) bl
| (na,bk,Some bd,ty)::bl ->
let sigma, ty' = pretype_type empty_valcon env sigma ty in
let rty' = ESorts.relevance_of_sort sigma ty'.utj_type in
let sigma, bd' = pretype (mk_tycon ty'.utj_val) env sigma bd in
let dcl = LocalDef (make_annot na rty', bd'.uj_val, ty'.utj_val) in
let dcl', env = push_rel ~hypnaming sigma dcl env in
type_bl env sigma (Context.Rel.add dcl' ctxt) bl in
let sigma, ctxtv = Array.fold_left_map (fun sigma -> type_bl env sigma Context.Rel.empty) sigma bl in
let sigma, larj =
Array.fold_left2_map
(fun sigma e ar ->
pretype_type empty_valcon (snd (push_rel_context ~hypnaming sigma e env)) sigma ar)
sigma ctxtv lar in
let lara = Array.map (fun a -> a.utj_val) larj in
let ftys = Array.map2 (fun e a -> it_mkProd_or_LetIn a e) ctxtv lara in
let nbfix = Array.length lar in
let names = Array.map (fun id -> Name id) names in
let sigma =
match tycon with
| Some t ->
let fixi = match fixkind with
| GFix (vn,i) -> i
| GCoFix i -> i
in
begin match Evarconv.unify_delay !!env sigma ftys.(fixi) t with
| exception Evarconv.UnableToUnify _ -> sigma
| sigma -> sigma
end
| None -> sigma
in
let names = Array.map2 (fun na t ->
make_annot na (Retyping.relevance_of_type !!(env) sigma t))
names ftys
in
(* Note: bodies are not used by push_rec_types, so [||] is safe *)
let names,newenv = push_rec_types ~hypnaming sigma (names,ftys) env in
let sigma, vdefj =
Array.fold_left2_map_i
(fun i sigma ctxt def ->
(* we lift nbfix times the type in tycon, because of
* the nbfix variables pushed to newenv *)
let (ctxt,ty) =
decompose_prod_n_decls sigma (Context.Rel.length ctxt)
(lift nbfix ftys.(i)) in
let ctxt,nenv = push_rel_context ~hypnaming sigma ctxt newenv in
let sigma, j = pretype (mk_tycon ty) nenv sigma def in
sigma, { uj_val = it_mkLambda_or_LetIn j.uj_val ctxt;
uj_type = it_mkProd_or_LetIn j.uj_type ctxt })
sigma ctxtv vdef in
let sigma = Typing.check_type_fixpoint ?loc !!env sigma names ftys vdefj in
let nf c = nf_evar sigma c in
let ftys = Array.map nf ftys in (* FIXME *)
let fdefs = Array.map (fun x -> nf (j_val x)) vdefj in
let fixj = match fixkind with
| GFix (vn,i) ->
(* First, let's find the guard indexes. *)
(* If recursive argument was not given by user, we try all args.
An earlier approach was to look only for inductive arguments,
but doing it properly involves delta-reduction, and it finally
doesn't seem worth the effort (except for huge mutual
fixpoints ?) *)
let possible_indexes =
Array.to_list (Array.mapi
(fun i annot -> match annot with
| Some n -> [n]
| None -> List.map_i (fun i _ -> i) 0 ctxtv.(i))
vn)
in
let fixdecls = (names,ftys,fdefs) in
let indexes = esearch_guard ?loc !!env sigma possible_indexes fixdecls in
make_judge (mkFix ((indexes,i),fixdecls)) ftys.(i)
| GCoFix i ->
let fixdecls = (names,ftys,fdefs) in
let cofix = (i, fixdecls) in
(try check_cofix !!env (i, nf_fix sigma fixdecls)
with reraise ->
let (e, info) = Exninfo.capture reraise in
let info = Option.cata (Loc.add_loc info) info loc in
Exninfo.iraise (e, info));
make_judge (mkCoFix cofix) ftys.(i)
in
discard_trace @@ inh_conv_coerce_to_tycon ?loc ~flags env sigma fixj tycon
let pretype_sort self s =
fun ?loc ~flags tycon env sigma ->
let sigma, j = pretype_sort ?loc sigma s in
discard_trace @@ inh_conv_coerce_to_tycon ?loc ~flags env sigma j tycon
let pretype_app self (f, args) =
fun ?loc ~flags tycon env sigma ->
let pretype tycon env sigma c = eval_pretyper self ~flags tycon env sigma c in
let sigma, fj = pretype empty_tycon env sigma f in
let floc = loc_of_glob_constr f in
let length = List.length args in
let nargs_before_bidi =
if Option.is_empty tycon then length
(* We apply bidirectionality hints only if an expected type is specified *)
else
(* if `f` is a global, we retrieve bidirectionality hints *)
try
let (gr,_) = destRef sigma fj.uj_val in
Option.default length @@ get_bidirectionality_hint gr
with DestKO ->
length
in
let candargs =
(* Bidirectional typechecking hint:
parameters of a constructor are completely determined
by a typing constraint *)
(* This bidirectionality machinery is the one of `Program` for
constructors and is orthogonal to bidirectionality hints. However, we
could probably factorize both by providing default bidirectionality hints
for constructors corresponding to their number of parameters. *)
if flags.program_mode && length > 0 && isConstruct sigma fj.uj_val then
match tycon with
| None -> []
| Some ty ->
let ((ind, i), u) = destConstruct sigma fj.uj_val in
let npars = inductive_nparams !!env ind in
if Int.equal npars 0 then []
else
try
let IndType (indf, args) = find_rectype !!env sigma ty in
let ((ind',u'),pars) = dest_ind_family indf in
if QInd.equal !!env ind ind' then List.map EConstr.of_constr pars
else (* Let the usual code throw an error *) []
with Not_found -> []
else []
in
let refresh_template env sigma resj =
(* Special case for inductive type applications that must be
refreshed right away. *)
match EConstr.kind sigma resj.uj_val with
| App (f,args) ->
if Termops.is_template_polymorphic_ind !!env sigma f then
let c = mkApp (f, args) in
let sigma, c = Evarsolve.refresh_universes (Some true) !!env sigma c in
let t = Retyping.get_type_of !!env sigma c in
sigma, make_judge c (* use this for keeping evars: resj.uj_val *) t
else sigma, resj
| _ -> sigma, resj
in
let rec apply_rec env sigma n body (subs, typ) val_before_bidi candargs bidiargs = function
| [] ->
let typ = Vars.esubst Vars.lift_substituend subs typ in
let body = Coercion.force_app_body body in
let resj = { uj_val = body; uj_type = typ } in
sigma, resj, val_before_bidi, List.rev bidiargs
| c::rest ->
let bidi = n >= nargs_before_bidi in
let argloc = loc_of_glob_constr c in
let sigma, body, na, c1, subs, c2, trace = match EConstr.kind sigma typ with
| Prod (na, c1, c2) ->
(* Fast path *)
let c1 = Vars.esubst Vars.lift_substituend subs c1 in
sigma, body, na, c1, subs, c2, Coercion.empty_coercion_trace
| _ ->
let typ = Vars.esubst Vars.lift_substituend subs typ in
let sigma, body, typ, trace = Coercion.inh_app_fun ~program_mode:flags.program_mode ~resolve_tc:flags.resolve_tc ~use_coercions:flags.use_coercions !!env sigma body typ in
let resty = whd_all !!env sigma typ in
let na, c1, c2 = match EConstr.kind sigma resty with
| Prod (na, c1, c2) -> (na, c1, c2)
| _ ->
let sigma, hj = pretype empty_tycon env sigma c in
let resj = { uj_val = Coercion.force_app_body body; uj_type = typ } in
error_cant_apply_not_functional
?loc:(Loc.merge_opt floc argloc) !!env sigma resj [|hj|]
in
sigma, body, na, c1, Esubst.subs_id 0, c2, trace
in
let (sigma, hj), bidiargs =
if bidi then
(* We want to get some typing information from the context before
typing the argument, so we replace it by an existential
variable *)
let sigma, c_hole = new_evar env sigma ~src:(loc,Evar_kinds.InternalHole) c1 in
(sigma, make_judge c_hole c1), (c_hole, c1, c, trace) :: bidiargs
else
let tycon = Some c1 in
pretype tycon env sigma c, bidiargs
in
let sigma, candargs, ujval =
match candargs with
| [] -> sigma, [], j_val hj
| arg :: args ->
begin match Evarconv.unify_delay !!env sigma (j_val hj) arg with
| exception Evarconv.UnableToUnify (sigma,e) ->
raise (PretypeError (!!env,sigma,CannotUnify (j_val hj, arg, Some e)))
| sigma ->
sigma, args, nf_evar sigma (j_val hj)
end
in
let sigma, ujval = adjust_evar_source sigma na.binder_name ujval in
let subs = Esubst.subs_cons (Vars.make_substituend ujval) subs in
let body = Coercion.push_arg body ujval in
let val_before_bidi = if bidi then val_before_bidi else body in
apply_rec env sigma (n+1) body (subs, c2) val_before_bidi candargs bidiargs rest
in
let typ = (Esubst.subs_id 0, fj.uj_type) in
let body = (Coercion.start_app_body sigma fj.uj_val) in
let sigma, resj, val_before_bidi, bidiargs =
apply_rec env sigma 0 body typ body candargs [] args
in
let sigma, resj = refresh_template env sigma resj in
let sigma, resj, otrace = inh_conv_coerce_to_tycon ?loc ~flags env sigma resj tycon in
let refine_arg n (sigma,t) (newarg,ty,origarg,trace) =
(* Refine an argument (originally `origarg`) represented by an evar
(`newarg`) to use typing information from the context *)
(* Type the argument using the expected type *)
let sigma, j = pretype (Some ty) env sigma origarg in
(* Unify the (possibly refined) existential variable with the
(typechecked) original value *)
let sigma = try Evarconv.unify_delay !!env sigma newarg (j_val j)
with Evarconv.UnableToUnify (sigma,e) ->
raise (PretypeError (!!env,sigma,CannotUnify (newarg,j_val j,Some e)))
in
sigma, Coercion.push_arg (Coercion.reapply_coercions_body sigma trace t) (j_val j)
in
(* We now refine any arguments whose typing was delayed for
bidirectionality *)
let t = val_before_bidi in
let sigma, t = List.fold_left_i refine_arg nargs_before_bidi (sigma,t) bidiargs in
let t = Coercion.force_app_body t in
(* If we did not get a coercion trace (e.g. with `Program` coercions, we
replaced user-provided arguments with inferred ones. Otherwise, we apply
the coercion trace to the user-provided arguments. *)
let resj =
match otrace with
| None -> resj
| Some trace ->
let resj = { resj with uj_val = t } in
let sigma, resj = refresh_template env sigma resj in
{ resj with uj_val = Coercion.reapply_coercions sigma trace t }
in
(sigma, resj)
let pretype_proj self ((f,us), args, c) =
fun ?loc ~flags tycon env sigma ->
pretype_app self (DAst.make ?loc (GRef (GlobRef.ConstRef f,us)), args @ [c])
?loc ~flags tycon env sigma
let pretype_lambda self (name, bk, c1, c2) =
fun ?loc ~flags tycon env sigma ->
let open Context.Rel.Declaration in
let tycon' = if flags.program_mode && flags.use_coercions
then Option.map (Coercion.remove_subset !!env sigma) tycon
else tycon
in
let sigma,name',dom,rng =
match tycon' with
| None -> sigma,Anonymous, None, None
| Some ty ->
let sigma, ty = Evardefine.presplit !!env sigma ty in
match EConstr.kind sigma ty with
| Prod (na,dom,rng) ->
sigma, na.binder_name, Some dom, Some rng
| Evar ev ->
(* define_evar_as_product works badly when impredicativity
is possible but not known (#12623). OTOH if we know we
are impredicative (typically Prop) we want to keep the
information when typing the body. *)
let s = Retyping.get_sort_of !!env sigma ty in
if Environ.is_impredicative_sort !!env (ESorts.kind sigma s)
|| Evd.check_leq sigma ESorts.type1 s
then
let sigma, prod = define_evar_as_product !!env sigma ev in
let na,dom,rng = destProd sigma prod in
sigma, na.binder_name, Some dom, Some rng
else
sigma, Anonymous, None, None
| _ ->
if Reductionops.is_head_evar !!env sigma ty then sigma, Anonymous, None, None
else
(* No chance of unifying with a product.
NB: Funclass cannot be a source class so no coercions. *)
error_not_product ?loc !!env sigma ty
in
let dom_valcon = valcon_of_tycon dom in
let sigma, j = eval_type_pretyper self ~flags dom_valcon env sigma c1 in
let name = {binder_name=name; binder_relevance=ESorts.relevance_of_sort sigma j.utj_type} in
let var = LocalAssum (name, j.utj_val) in
let vars = VarSet.variables (Global.env ()) in
let hypnaming = if flags.program_mode then ProgramNaming vars else RenameExistingBut vars in
let var',env' = push_rel ~hypnaming sigma var env in
let sigma, j' = eval_pretyper self ~flags rng env' sigma c2 in
let name = get_name var' in
let resj = judge_of_abstraction !!env sigma (orelse_name name name') j j' in
discard_trace @@ inh_conv_coerce_to_tycon ?loc ~flags env sigma resj tycon
let pretype_prod self (name, bk, c1, c2) =
fun ?loc ~flags tycon env sigma ->
let open Context.Rel.Declaration in
let pretype_type tycon env sigma c = eval_type_pretyper self ~flags tycon env sigma c in
let sigma, j = pretype_type empty_valcon env sigma c1 in
let vars = VarSet.variables (Global.env ()) in
let hypnaming = if flags.program_mode then ProgramNaming vars else RenameExistingBut vars in
let sigma, name, j' = match name with
| Anonymous ->
let sigma, j = pretype_type empty_valcon env sigma c2 in