forked from z-fabian/flash-diffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoperators.py
378 lines (338 loc) · 15.2 KB
/
operators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import sys, pathlib, yaml
sys.path.insert(0, str(pathlib.Path(__file__).parent.parent.absolute() / 'bkse'))
import torch
from torch import nn
import scipy.ndimage
import numpy as np
class NoiseScheduler:
def __init__(self, sigma_min, sigma_max):
self.sigma_min = sigma_min
self.sigma_max = sigma_max
def __call__(self, t, noise_shape, seed=None):
assert 0.0 <= t <= 1.0
std = self.get_std(t)
if seed is not None:
rand_state = torch.get_rng_state()
torch.random.manual_seed(seed)
z = torch.randn(noise_shape) * std
torch.set_rng_state(rand_state)
return z, std
else:
return torch.randn(noise_shape) * std, std
def get_std(self, t):
std = self.sigma_min * (self.sigma_max / self.sigma_min) ** t
return std
class Blurkernel(nn.Module):
def __init__(self, blur_type='gaussian', kernel_size=31, std=3.0):
super().__init__()
self.blur_type = blur_type
self.kernel_size = kernel_size
self.std = std
self.seq = nn.Sequential(
nn.ReflectionPad2d(self.kernel_size//2),
nn.Conv2d(3, 3, self.kernel_size, stride=1, padding=0, bias=False, groups=3)
)
self.seq_transpose = nn.ConvTranspose2d(3, 3, self.kernel_size, stride=1, padding=0, bias=False, groups=3)
self.weights_init()
def forward(self, x):
return self.seq(x)
def transpose(self, x):
w = self.kernel_size//2
out = self.seq_transpose(x)
out[..., w:2*w, :] += torch.flip(out[..., 0:w:, :], dims=[-2])
out[..., -2*w:-w, :] += torch.flip(out[..., -w:, :], dims=[-2])
out[..., :, w:2*w] += torch.flip(out[..., :, 0:w], dims=[-1])
out[..., :, -2*w:-w] += torch.flip(out[..., :, -w:], dims=[-1])
return out[..., w:-w, w:-w]
def weights_init(self):
if self.blur_type == "gaussian":
n = np.zeros((self.kernel_size, self.kernel_size))
n[self.kernel_size // 2,self.kernel_size // 2] = 1
k = scipy.ndimage.gaussian_filter(n, sigma=self.std, truncate=6.0)
k = torch.from_numpy(k)
self.k = k
for name, f in self.named_parameters():
f.data.copy_(k)
f.requires_grad_(False)
elif self.blur_type == "motion":
raise ValueError('Unsupported blur type.')
def update_weights(self, k):
if not torch.is_tensor(k):
k = torch.from_numpy(k)
for name, f in self.named_parameters():
f.data.copy_(k)
f = f.to(k.device)
f.requires_grad_(False)
def get_kernel(self):
return self.k
class GaussianBlurOperator:
def __init__(self,
kernel_size,
std_schedule,
from_file=None,
):
self.kernel_size = kernel_size
if from_file is None:
self.std_schedule = std_schedule
else:
assert from_file is not None
self.t_vals, self.std_vals = torch.from_numpy(np.loadtxt(from_file)[:, 0]), torch.from_numpy(np.loadtxt(from_file)[:, 1])
self.std_schedule = lambda t: self.lerp_std(t)
self.conv = None
def update_kernel(self, t):
self.conv = Blurkernel(blur_type='gaussian',
kernel_size=self.kernel_size,
std=self.std_from_t(t),
)
self.kernel = self.conv.get_kernel().to(t.device)
self.conv.update_weights(self.kernel.type(torch.float32))
self.conv.to(t.device)
def __call__(self, data, t, **kwargs):
return self.forward(data, t, **kwargs)
def forward(self, data, t, **kwargs):
assert 0.0 <= t <= 1.0
self.update_kernel(t)
return self.conv(data)
def forward_transpose(self, data, t, **kwargs):
assert 0.0 <= t <= 1.0
self.update_kernel(t)
return self.conv.transpose(data)
def get_kernel(self, t):
self.update_kernel(t)
return self.kernel.view(1, 1, self.kernel_size, self.kernel_size)
def std_from_t(self, t):
std = self.std_schedule(t)
std_np = float(std)
return std_np
def lerp_std(self, t):
assert 0.0 <= t <= 1.0
self.std_vals = self.std_vals.to(t.device)
self.t_vals = self.t_vals.to(t.device)
if t == 0.0:
return self.std_vals[0]
elif t == 1.0:
return self.std_vals[-1]
else:
# linear interpolation
t_end_index = (self.t_vals >= t).nonzero(as_tuple=False)[0]
t_start_index = t_end_index - 1
std_out = self.std_vals[t_start_index] + (self.std_vals[t_end_index]- self.std_vals[t_start_index]) * (t - self.t_vals[t_start_index]) / (self.t_vals[t_end_index] - self.t_vals[t_start_index])
return std_out
class NonlinearBlurOperator:
def __init__(self):
self.blur_model = self.prepare_nonlinear_blur_model('./bkse/options/generate_blur/default.yml')
self.rng = torch.Generator()
def prepare_nonlinear_blur_model(self, opt_yml_path):
'''
Nonlinear deblur requires external codes (bkse).
'''
from bkse.models.kernel_encoding.kernel_wizard import KernelWizard
with open(opt_yml_path, "r") as f:
opt = yaml.safe_load(f)["KernelWizard"]
model_path = 'bkse/' + opt["pretrained"]
blur_model = KernelWizard(opt)
blur_model.eval()
blur_model.load_state_dict(torch.load(model_path))
blur_model = blur_model
return blur_model
def forward(self, data, **kwargs):
if data.device != next(self.blur_model.parameters()).device:
self.blur_model.to(data.device)
b = data.shape[0]
if 'seed' in kwargs and kwargs['seed'] is not None:
self.rng.manual_seed(kwargs['seed'])
else:
self.rng.seed()
random_kernel = torch.randn(b, 512, 2, 2, generator=self.rng).to(data.device) * 1.2
data_scaled = (data + 1.0) / 2.0 #[-1, 1] -> [0, 1]
blurred = self.blur_model.adaptKernel(data_scaled, kernel=random_kernel)
blurred = (blurred * 2.0 - 1.0).clamp(-1, 1) #[0, 1] -> [-1, 1]
return blurred
def forward_transpose(self, data, **kwargs):
raise NotImplementedError('Nonlinear deblur does not support transpose.')
def __call__(self, data, t, **kwargs):
return self.forward(data, **kwargs)
class InpaintingOperator:
def __init__(self,
mask_type='box',
box_size=None,
box_min_size=None,
box_max_size=None,
mask_min_std=None,
mask_max_std=None,
mask_pow=None,
mask_min_ratio=None,
mask_max_ratio=None,
mask_schedule=None,
from_file=None,
img_size=256,
**kwargs,
):
self.mask_type = mask_type
self.img_size = img_size
self.rng = torch.Generator()
if self.mask_type == 'box':
assert box_size is not None
self.box_size = box_size
elif self.mask_type == 'random_box':
assert box_min_size is not None
assert box_max_size is not None
self.box_min_size = box_min_size
self.box_max_size = box_max_size
elif self.mask_type == 'gaussian':
assert mask_min_std is not None
assert mask_max_std is not None
assert mask_pow is not None
self.mask_min_std = mask_min_std
self.mask_max_std = mask_max_std
self.mask_pow = mask_pow
elif self.mask_type == 'random':
self.rng.manual_seed(0)
self.mask_min_ratio = mask_min_ratio
self.mask_max_ratio = mask_max_ratio
self.mask_vals_unthresh = torch.rand(self.img_size, self.img_size, generator=self.rng)
range_new = 1.0 / (self.mask_max_ratio - self.mask_min_ratio)
self.mask_vals_unthresh = self.mask_vals_unthresh * range_new - range_new * self.mask_min_ratio
if from_file is None:
assert mask_schedule is not None
self.mask_schedule = mask_schedule
else:
self.t_vals, self.mask_factor_vals = torch.from_numpy(np.loadtxt(from_file)[:, 0]), torch.from_numpy(np.loadtxt(from_file)[:, 1])
self.mask_schedule = lambda t: self.lerp_mask(t)
def __call__(self, data, t, **kwargs):
return self.forward(data, t, **kwargs)
def forward(self, data, t, **kwargs):
assert 0.0 <= t <= 1.0
seed = kwargs['seed'] if 'seed' in kwargs else None
mask_t = self.mask_from_t(t, seed)
return data * mask_t.to(data.device)
def forward_transpose(self, data, t, **kwargs):
return self.forward(data, t, **kwargs)
def mask_from_t(self, t, seed=None):
if self.mask_type == 'box':
if t == 0.0:
return torch.ones((self.img_size, self.img_size))
mask1 = torch.ones((self.img_size, self.img_size))
mask1 = self.set_center_box_to_val(mask1, torch.floor(self.box_size * t), 0) # Zero mask in the center
mask2 = torch.ones((self.img_size, self.img_size))
mask2 = self.set_center_box_to_val(mask2, torch.floor(self.box_size * t) + 1, 1 - self.box_size * t + torch.floor(self.box_size * t)) # linear mask on the perimeter
return mask1 * mask2
elif self.mask_type == 'random_box':
mask = torch.ones((self.img_size, self.img_size))
if t == 0.0 and self.box_min_size[0]==0 and self.box_min_size[1]==0:
return mask
if seed is not None:
self.rng.manual_seed(seed)
else:
self.rng.seed()
area_max = self.box_max_size[0] * self.box_max_size[1]
ratio = torch.rand(1, generator=self.rng).to(t.device) * 0.5 + 0.4999
a = torch.sqrt(ratio * area_max)
b = a / ratio
a = (a - self.box_min_size[0]) * torch.sqrt(t) + self.box_min_size[0]
b = (b - self.box_min_size[1]) * torch.sqrt(t) + self.box_min_size[1]
flip = torch.randint(size=(1,), high=2, generator=self.rng)
box_width = a if flip else b
box_width = int(self.img_size * box_width)
box_height = b if flip else a
box_height = int(self.img_size * box_height)
pos_w = torch.randint(size=(1,), high=self.img_size-box_width-1, generator=self.rng)
pos_h = torch.randint(size=(1,), high=self.img_size-box_height-1, generator=self.rng)
mask[pos_w:pos_w+box_width, pos_h:pos_h+box_height] = 0.0
rotations = int(torch.randint(size=(1,), high=4, generator=self.rng))
mask = torch.rot90(mask, rotations)
return mask
elif self.mask_type == 'gaussian':
if t == 0.0:
return torch.ones((self.img_size, self.img_size))
mask = self.gaussian_mask_from_t(t, (self.img_size, self.img_size))
return mask
elif self.mask_type == 'random':
mask = torch.where(self.mask_vals_unthresh.to(t.device) < (1 - t), 1.0, 0.0)
return mask
else:
raise ValueError('Inpainting mask type not implemented.')
def lerp_mask(self, t):
assert 0.0 <= t <= 1.0
if t == 0.0:
return self.mask_factor_vals[0]
elif t == 1.0:
return self.mask_factor_vals[-1]
else:
# linear interpolation
assert 0.0 <= t <= 1.0
self.mask_factor_vals = self.mask_factor_vals.to(t.device)
self.t_vals = self.t_vals.to(t.device)
t_end_index = (self.t_vals >= t).nonzero(as_tuple=False)[0]
t_start_index = t_end_index - 1
mask_factor_out = self.mask_factor_vals[t_start_index] + (self.mask_factor_vals[t_end_index]- self.mask_factor_vals[t_start_index]) * (t - self.t_vals[t_start_index]) / (self.t_vals[t_end_index] - self.t_vals[t_start_index])
return mask_factor_out
def gaussian_mask_from_t(self, t, shape):
h, w = shape
def crop_center(img,cropx,cropy):
y,x = img.shape
startx = x//2-(cropx//2)
starty = y//2-(cropy//2)
return img[starty:starty+cropy,startx:startx+cropx]
kernel_size_h, kernel_size_w = h * 2, w * 2
std = float(self.mask_min_std + t * (self.mask_max_std - self.mask_min_std))
n = np.zeros((kernel_size_h, kernel_size_w))
n[kernel_size_h // 2, kernel_size_w // 2] = 1
k = scipy.ndimage.gaussian_filter(n, sigma=std)
k = 1.0 - k / k.max()
k = crop_center(k, h, w)
k = k ** self.mask_pow
return torch.from_numpy(k).float().view(h, w)
@staticmethod
def set_center_box_to_val(x, box_sz, val):
h, w = x.shape[-2:]
box_sz = int(box_sz)
start_h = h//2-(box_sz//2)
start_w = w//2-(box_sz//2)
x[start_h:start_h+box_sz,start_w:start_w+box_sz] = val
return x
def create_operator(config):
if config['type'] == 'gaussian_blur':
MIN_STD = 0.3 # below this the filter is truncated and we get identity mapping
if config['scheduling'] == 'linear':
std_schedule = lambda t: (config['max_std'] - MIN_STD) * t + MIN_STD
return GaussianBlurOperator(config['kernel_size'], std_schedule)
elif config['scheduling'] == 'from_file':
return GaussianBlurOperator(config['kernel_size'], std_schedule=None, from_file=config['schedule_path'])
elif config['scheduling'] == 'fixed':
std_schedule = lambda t: config['max_std']
return GaussianBlurOperator(config['kernel_size'], std_schedule)
elif config['type'] == 'nonlinear_blur':
return NonlinearBlurOperator()
elif config['type'] == 'inpainting':
if 'img_size' not in config:
config['img_size'] = 256
if 'box_size' not in config:
config['box_size'] = None
if 'mask_min_std' not in config:
config['mask_min_std'] = None
if 'mask_min_std' not in config:
config['mask_max_std'] = None
if 'mask_min_ratio' not in config:
config['mask_min_ratio'] = None
if 'mask_max_ratio' not in config:
config['mask_max_ratio'] = None
if 'mask_pow' not in config:
config['mask_pow'] = None
if config['scheduling'] == 'linear':
config['mask_schedule'] = (lambda t: t)
config['from_file'] = None
elif config['scheduling'] == 'from_file':
config['mask_schedule'] = None
config['from_file'] = config['schedule_path']
else:
raise ValueError('Unkown inpainting scheduling type.')
return InpaintingOperator(**config)
else:
raise ValueError('Unsupported operator in config.')
def create_noise_schedule(config):
if config is None:
return None
else:
noise_schedule = NoiseScheduler(config['sigma_min'], config['sigma_max'])
return noise_schedule