You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: StkEngineContainerization/linux/stk-parallel-computing-server/README.md
+7-7
Original file line number
Diff line number
Diff line change
@@ -28,10 +28,10 @@ Note: Since STK Parallel Computing Server consists of multiple containers runnin
28
28
* Copy the `STK_Parallel_Computing_Coordinator${version}.tgz` from the `Linux` folder to the [`coordinator/distributions`](./coordinator/distributions/) folder.
29
29
* Copy the `STK_Parallel_Computing_Agent${version}.tgz` from the `Linux` folder to the [`agent/distributions`](./agent/distributions/) folder.
30
30
3. Build the coordinator image:
31
-
* If you did not build the `custom-environment` image described in the [Special Configuration](#special-configuration) section, run `docker build -t ansys/stk/stk-parallel-computing-server-coordinator:{version}-ubi-8 coordinator` on the command line in this directory after replacing `{version}` with the version number. i.e `2.8.0`
32
-
* If you did build the `custom-environment` image described in the [Special Configuration](#special-configuration) section, run `docker build -t ansys/stk/stk-parallel-computing-server-coordinator:{version}-ubi-8 --build-arg baseImage=custom/redhat/ubi8:latest coordinator` on the command line in this directory after replacing `{version}` with the version number. i.e `2.8.0`
33
-
4. Run `docker build -t ansys/stk/stk-parallel-computing-server-python:{version}-ubi-8 python` on the command line in this directory after replacing `{version}` with the version number. i.e `2.8.0`. This produces an image that includes the STK Parallel Computing Server Python API. The Agent container extends from this, but it can also be used to execute a client script that submits jobs to the Coordinator service.
34
-
5. Run `docker build -t ansys/stk/stk-parallel-computing-server-agent:{version}-ubi-8 agent` on the command line in this directory after replacing `{version}` with the version number. i.e `2.8.0` to build the agent image.
31
+
* If you did not build the `custom-environment` image described in the [Special Configuration](#special-configuration) section, run `docker build -t ansys/stk/stk-parallel-computing-server-coordinator:{version}-ubi-8 coordinator` on the command line in this directory after replacing `{version}` with the version number. i.e `2.9.0`
32
+
* If you did build the `custom-environment` image described in the [Special Configuration](#special-configuration) section, run `docker build -t ansys/stk/stk-parallel-computing-server-coordinator:{version}-ubi-8 --build-arg baseImage=custom/redhat/ubi8:latest coordinator` on the command line in this directory after replacing `{version}` with the version number. i.e `2.9.0`
33
+
4. Run `docker build -t ansys/stk/stk-parallel-computing-server-python:{version}-ubi-8 python` on the command line in this directory after replacing `{version}` with the version number. i.e `2.9.0`. This produces an image that includes the STK Parallel Computing Server Python API. The Agent container extends from this, but it can also be used to execute a client script that submits jobs to the Coordinator service.
34
+
5. Run `docker build -t ansys/stk/stk-parallel-computing-server-agent:{version}-ubi-8 agent` on the command line in this directory after replacing `{version}` with the version number. i.e `2.9.0` to build the agent image.
35
35
36
36
### Run the Containers
37
37
@@ -40,18 +40,18 @@ Note: Since STK Parallel Computing Server consists of multiple containers runnin
40
40
The entrypoint of these containers start the Coordinator and Agent servers, with the Coordinator listening on the container's port `9090`. To start the containers:
41
41
42
42
1. Run `docker network create stk-parallel-computing-server` on the command line in this directory.
43
-
2. Run `docker run -d --rm --name stk-parallel-coordinator --network stk-parallel-computing-server --network-alias coordinator -p 9090:9090 ansys/stk/stk-parallel-computing-server-coordinator:{version}-ubi-8` on the command line in this directory after replacing `{version}` with the version number. i.e `2.8.0`
43
+
2. Run `docker run -d --rm --name stk-parallel-coordinator --network stk-parallel-computing-server --network-alias coordinator -p 9090:9090 ansys/stk/stk-parallel-computing-server-coordinator:{version}-ubi-8` on the command line in this directory after replacing `{version}` with the version number. i.e `2.9.0`
44
44
* If port `9090` is already in use on your machine, map a different port (e.g. `1234:9090`).
45
45
3. Run `docker run -d --rm --name stk-parallel-agent --network stk-parallel-computing-server --network-alias agent --env-file ../configuration/licensing.env -e COORDINATOR=coordinator ansys/stk/stk-parallel-computing-server-agent:{version}-ubi-8`
46
-
on the command line in this directory after replacing `{version}` with the version number. i.e `2.8.0`
46
+
on the command line in this directory after replacing `{version}` with the version number. i.e `2.9.0`
47
47
48
48
#### Execute Parallel Computing Tasks
49
49
50
50
This section will show how to execute the [`client_example.py`](./client_example.py) script using a Docker container with Python 3 and the STK Parallel Computing Server Python API installed.
51
51
52
52
In this example, each task will compute access intervals between a default satellite object and a default place object given the start and stop times of the analysis interval. Each task's interval is defined as an entry in the `timeIntervals` list. You can edit this list directly in the script file to add more calculation intervals or modify those already there. The date-times must be in valid ISO-8601 format.
53
53
54
-
1. Run `docker run --rm -v <ABSOLUTE PATH TO THIS DIRECTORY>/client_example.py:/tmp/client_example.py -e COORDINATOR_HOSTNAME=coordinator -e COORDINATOR_PORT=9090 -w /tmp --network stk-parallel-computing-server ansys/stk/stk-parallel-computing-server-python:{version}-ubi-8 client_example.py` on the command line in this directory after replacing `{version}` with the version number. i.e `2.8.0`
54
+
1. Run `docker run --rm -v <ABSOLUTE PATH TO THIS DIRECTORY>/client_example.py:/tmp/client_example.py -e COORDINATOR_HOSTNAME=coordinator -e COORDINATOR_PORT=9090 -w /tmp --network stk-parallel-computing-server ansys/stk/stk-parallel-computing-server-python:{version}-ubi-8 client_example.py` on the command line in this directory after replacing `{version}` with the version number. i.e `2.9.0`
55
55
* If you changed the host port mapping for the coordinator above, use that port for the value of `COORDINATOR_PORT`
Copy file name to clipboardexpand all lines: StkEngineContainerization/windows/stk-parallel-computing-server/README.md
+6-6
Original file line number
Diff line number
Diff line change
@@ -32,9 +32,9 @@ Note: Since STK Parallel Computing Server consists of multiple containers runnin
32
32
* Copy the `Server\Agent\v{version}` folder from the installation media to the [`agent\distributions`](./agent/distributions/) folder.
33
33
* Copy the `dotnet-runtime*.exe` file from the Prerequirements\DotNet.Core folder to the [`agent\distributions`](./agent/distributions/) AND the [`coordinator\distributions`](./coordinator/distributions/) folders.
34
34
3. Build the coordinator image:
35
-
Run `docker build --build-arg agreeToLicense=yes -t ansys/stk/stk-parallel-computing-server-coordinator:{version}-windowsservercore-ltsc2019 coordinator` on the command line in this directory after replacing `{version}` with the version number. i.e `2.8.0`. Supplying the agreeToLicense build argument indicates your acceptance of the STK End User License Agreement.
36
-
4. Run `docker build -t ansys/stk/stk-parallel-computing-server-python:{version}-windowsservercore-ltsc2019 python` on the command line in this directory after replacing `{version}` with the version number. i.e `2.8.0`. This produces an image that includes the STK Parallel Computing Server Python API. The Agent container extends from this, but it can also be used to execute a client script that submits jobs to the Coordinator service.
37
-
5. Run `docker build --build-arg agreeToLicense=yes -t ansys/stk/stk-parallel-computing-server-agent:{version}-windowsservercore-ltsc2019 agent` on the command line in this directory to build the agent image after replacing `{version}` with the version number. i.e `2.8.0`. Supplying the agreeToLicense build argument indicates your acceptance of the STK End User License Agreement.
35
+
Run `docker build --build-arg agreeToLicense=yes -t ansys/stk/stk-parallel-computing-server-coordinator:{version}-windowsservercore-ltsc2019 coordinator` on the command line in this directory after replacing `{version}` with the version number. i.e `2.9.0`. Supplying the agreeToLicense build argument indicates your acceptance of the STK End User License Agreement.
36
+
4. Run `docker build -t ansys/stk/stk-parallel-computing-server-python:{version}-windowsservercore-ltsc2019 python` on the command line in this directory after replacing `{version}` with the version number. i.e `2.9.0`. This produces an image that includes the STK Parallel Computing Server Python API. The Agent container extends from this, but it can also be used to execute a client script that submits jobs to the Coordinator service.
37
+
5. Run `docker build --build-arg agreeToLicense=yes -t ansys/stk/stk-parallel-computing-server-agent:{version}-windowsservercore-ltsc2019 agent` on the command line in this directory to build the agent image after replacing `{version}` with the version number. i.e `2.9.0`. Supplying the agreeToLicense build argument indicates your acceptance of the STK End User License Agreement.
38
38
39
39
### Run the Containers
40
40
@@ -43,17 +43,17 @@ Note: Since STK Parallel Computing Server consists of multiple containers runnin
43
43
The entrypoint of these containers start the Coordinator and Agent servers, with the Coordinator listening on the container's port `9090`. To start the containers:
44
44
45
45
1. Run `docker network create stk-parallel-computing-server` on the command line in this directory.
46
-
2. Run `docker run -d --rm --name stk-parallel-coordinator --network stk-parallel-computing-server --network-alias coordinator -p 9090:9090 ansys/stk/stk-parallel-computing-server-coordinator:{version}-windowsservercore-ltsc2019` on the command line in this directory after replacing `{version}` with the version number. i.e `2.8.0`
46
+
2. Run `docker run -d --rm --name stk-parallel-coordinator --network stk-parallel-computing-server --network-alias coordinator -p 9090:9090 ansys/stk/stk-parallel-computing-server-coordinator:{version}-windowsservercore-ltsc2019` on the command line in this directory after replacing `{version}` with the version number. i.e `2.9.0`
47
47
* If port `9090` is already in use on your machine, map a different port (e.g. `1234:9090`).
48
-
3. Run `docker run -d --rm --name stk-parallel-agent --network stk-parallel-computing-server --network-alias agent --env-file ..\configuration\licensing.env -e COORDINATOR=coordinator ansys/stk/stk-parallel-computing-server-agent:{version}-windowsservercore-ltsc2019` on the command line in this directory after replacing `{version}` with the version number. i.e `2.8.0`
48
+
3. Run `docker run -d --rm --name stk-parallel-agent --network stk-parallel-computing-server --network-alias agent --env-file ..\configuration\licensing.env -e COORDINATOR=coordinator ansys/stk/stk-parallel-computing-server-agent:{version}-windowsservercore-ltsc2019` on the command line in this directory after replacing `{version}` with the version number. i.e `2.9.0`
49
49
50
50
#### Execute Parallel Computing Tasks
51
51
52
52
This section will show how to execute the [`client_example.py`](./client_example.py) script using a Docker container with Python 3 and the STK Parallel Computing Server Python API installed.
53
53
54
54
In this example, each task will compute access intervals between a default satellite object and a default place object given the start and stop times of the analysis interval. Each task's interval is defined as an entry in the `timeIntervals` list. You can edit this list directly in the script file to add more calculation intervals or modify those already there. The date-times must be in valid ISO-8601 format.
55
55
56
-
1. Run `docker run --rm -v <ABSOLUTE PATH TO THIS DIRECTORY>\:C:\test\ -e COORDINATOR_HOSTNAME=coordinator -e COORDINATOR_PORT=9090 -w C:\test --network stk-parallel-computing-server ansys/stk/stk-parallel-computing-server-python:{version}-windowsservercore-ltsc2019 client_example.py` on the command line in this directory after replacing `{version}` with the version number. i.e `2.8.0`
56
+
1. Run `docker run --rm -v <ABSOLUTE PATH TO THIS DIRECTORY>\:C:\test\ -e COORDINATOR_HOSTNAME=coordinator -e COORDINATOR_PORT=9090 -w C:\test --network stk-parallel-computing-server ansys/stk/stk-parallel-computing-server-python:{version}-windowsservercore-ltsc2019 client_example.py` on the command line in this directory after replacing `{version}` with the version number. i.e `2.9.0`
57
57
* If you changed the host port mapping for the coordinator above, use that port for the value of `COORDINATOR_PORT` instead of `9090`.
0 commit comments