-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathblob.py
113 lines (89 loc) · 3.23 KB
/
blob.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import io
import typing
from azure.functions import _abc as azf_abc
from . import meta
from .. import protos
class InputStream(azf_abc.InputStream):
def __init__(self, *, data: bytes,
name: typing.Optional[str]=None,
uri: typing.Optional[str]=None,
length: typing.Optional[int]=None) -> None:
self._io = io.BytesIO(data)
self._name = name
self._length = length
self._uri = uri
@property
def name(self) -> typing.Optional[str]:
return self._name
@property
def length(self) -> typing.Optional[int]:
return self._length
@property
def uri(self) -> typing.Optional[str]:
return self._uri
def read(self, size=-1) -> bytes:
return self._io.read(size)
def readable(self) -> bool:
return True
def seekable(self) -> bool:
return False
def writable(self) -> bool:
return False
class BlobConverter(meta.InConverter,
meta.OutConverter,
binding='blob'):
@classmethod
def check_input_type_annotation(cls, pytype: type) -> bool:
return issubclass(pytype, azf_abc.InputStream)
@classmethod
def check_output_type_annotation(cls, pytype: type) -> bool:
return (issubclass(pytype, (str, bytes, bytearray,
azf_abc.InputStream) or
callable(getattr(pytype, 'read', None))))
@classmethod
def to_proto(cls, obj: typing.Any, *,
pytype: typing.Optional[type]) -> protos.TypedData:
if callable(getattr(obj, 'read', None)):
# file-like object
obj = obj.read()
if isinstance(obj, str):
return protos.TypedData(string=obj)
elif isinstance(obj, (bytes, bytearray)):
return protos.TypedData(bytes=bytes(obj))
else:
raise NotImplementedError
@classmethod
def from_proto(cls, data: protos.TypedData, *,
pytype: typing.Optional[type],
trigger_metadata) -> typing.Any:
data_type = data.WhichOneof('data')
if data_type == 'string':
data = data.string.encode('utf-8')
elif data_type == 'bytes':
data = data.bytes
else:
raise NotImplementedError
if trigger_metadata is None:
return InputStream(data=data)
else:
properties = cls._decode_trigger_metadata_field(
trigger_metadata, 'Properties', python_type=dict)
if properties:
length = properties.get('Length')
if length:
length = int(length)
else:
length = None
else:
length = None
return InputStream(
data=data,
name=cls._decode_trigger_metadata_field(
trigger_metadata, 'BlobTrigger', python_type=str),
length=length,
uri=cls._decode_trigger_metadata_field(
trigger_metadata, 'Uri', python_type=str),
)
class BlobTriggerConverter(BlobConverter,
binding='blobTrigger', trigger=True):
pass