|
2 | 2 | "cells": [
|
3 | 3 | {
|
4 | 4 | "cell_type": "code",
|
5 |
| - "execution_count": 1, |
| 5 | + "execution_count": null, |
6 | 6 | "metadata": {},
|
7 | 7 | "outputs": [],
|
8 | 8 | "source": [
|
|
22 | 22 | },
|
23 | 23 | {
|
24 | 24 | "cell_type": "code",
|
25 |
| - "execution_count": 1, |
| 25 | + "execution_count": null, |
26 | 26 | "metadata": {},
|
27 | 27 | "outputs": [],
|
28 | 28 | "source": [
|
|
33 | 33 | },
|
34 | 34 | {
|
35 | 35 | "cell_type": "code",
|
36 |
| - "execution_count": 2, |
| 36 | + "execution_count": null, |
37 | 37 | "metadata": {},
|
38 |
| - "outputs": [ |
39 |
| - { |
40 |
| - "name": "stderr", |
41 |
| - "output_type": "stream", |
42 |
| - "text": [ |
43 |
| - "/Users/phuembeli/Qiskit_develop/qiskit-terra/qiskit/pulse/channels/pulse_channels.py:25: DeprecationWarning: Channels have been migrated. Please use `from qiskit.pulse.channels import X` rather than `from qiskit.pulse.channels.pulse_channels import X`.\n", |
44 |
| - " DeprecationWarning)\n" |
45 |
| - ] |
46 |
| - } |
47 |
| - ], |
| 38 | + "outputs": [], |
48 | 39 | "source": [
|
49 | 40 | "from qiskit import QuantumRegister,QuantumCircuit,ClassicalRegister,execute\n",
|
50 | 41 | "from qiskit.circuit import Parameter\n",
|
|
54 | 45 | },
|
55 | 46 | {
|
56 | 47 | "cell_type": "code",
|
57 |
| - "execution_count": 3, |
| 48 | + "execution_count": null, |
58 | 49 | "metadata": {},
|
59 | 50 | "outputs": [],
|
60 | 51 | "source": [
|
|
63 | 54 | },
|
64 | 55 | {
|
65 | 56 | "cell_type": "code",
|
66 |
| - "execution_count": 4, |
| 57 | + "execution_count": null, |
67 | 58 | "metadata": {},
|
68 | 59 | "outputs": [],
|
69 | 60 | "source": [
|
|
73 | 64 | },
|
74 | 65 | {
|
75 | 66 | "cell_type": "code",
|
76 |
| - "execution_count": 5, |
| 67 | + "execution_count": null, |
77 | 68 | "metadata": {},
|
78 | 69 | "outputs": [],
|
79 | 70 | "source": [
|
|
89 | 80 | },
|
90 | 81 | {
|
91 | 82 | "cell_type": "code",
|
92 |
| - "execution_count": 6, |
| 83 | + "execution_count": null, |
93 | 84 | "metadata": {},
|
94 | 85 | "outputs": [],
|
95 | 86 | "source": [
|
|
129 | 120 | },
|
130 | 121 | {
|
131 | 122 | "cell_type": "code",
|
132 |
| - "execution_count": 7, |
| 123 | + "execution_count": null, |
133 | 124 | "metadata": {
|
134 | 125 | "ExecuteTime": {
|
135 | 126 | "end_time": "2019-10-01T16:09:30.598730Z",
|
|
201 | 192 | },
|
202 | 193 | {
|
203 | 194 | "cell_type": "code",
|
204 |
| - "execution_count": 8, |
| 195 | + "execution_count": null, |
205 | 196 | "metadata": {},
|
206 | 197 | "outputs": [],
|
207 | 198 | "source": [
|
|
246 | 237 | },
|
247 | 238 | {
|
248 | 239 | "cell_type": "code",
|
249 |
| - "execution_count": 9, |
| 240 | + "execution_count": null, |
250 | 241 | "metadata": {},
|
251 |
| - "outputs": [ |
252 |
| - { |
253 |
| - "name": "stdout", |
254 |
| - "output_type": "stream", |
255 |
| - "text": [ |
256 |
| - "tensor([[0.0206, 0.0210, 0.0104]])\n" |
257 |
| - ] |
258 |
| - } |
259 |
| - ], |
| 242 | + "outputs": [], |
260 | 243 | "source": [
|
261 | 244 | "# x = torch.tensor([np.pi/4, np.pi/4, np.pi/4], requires_grad=True)\n",
|
262 | 245 | "x = torch.tensor([[0.0, 0.0, 0.0]], requires_grad=True)\n",
|
|
284 | 267 | },
|
285 | 268 | {
|
286 | 269 | "cell_type": "code",
|
287 |
| - "execution_count": 10, |
| 270 | + "execution_count": null, |
288 | 271 | "metadata": {},
|
289 |
| - "outputs": [ |
290 |
| - { |
291 |
| - "name": "stderr", |
292 |
| - "output_type": "stream", |
293 |
| - "text": [ |
294 |
| - "100%|██████████| 100/100 [00:09<00:00, 10.37it/s]\n" |
295 |
| - ] |
296 |
| - }, |
297 |
| - { |
298 |
| - "data": { |
299 |
| - "text/plain": [ |
300 |
| - "[<matplotlib.lines.Line2D at 0x1277a0b70>]" |
301 |
| - ] |
302 |
| - }, |
303 |
| - "execution_count": 10, |
304 |
| - "metadata": {}, |
305 |
| - "output_type": "execute_result" |
306 |
| - }, |
307 |
| - { |
308 |
| - "data": { |
309 |
| - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXxV9Z3/8dc3N3tC9psEEkIIBMImECObUhE3lBlxtIz7Uheqtj9tp50ZW9tOtTOPrtN2HKvWrYK17ijUfcMFUSAEkB2BAAmQEBJIAtluku/vj1yZiEAWcnPu8n4+HvfhPeeecD7HA++c+z3f8/0aay0iIhL4wpwuQERE+oYCXUQkSCjQRUSChAJdRCRIKNBFRIJEuFM7TktLs7m5uU7tXkQkIK1ateqAtdZ9vM8cC/Tc3FyKi4ud2r2ISEAyxuw60WdqchERCRIKdBGRIKFAFxEJEgp0EZEgoUAXEQkSCnQRkSChQBcRCRIhF+hvrt/HvtpGp8sQEelzIRXoTywt5ba/lvCfr21yuhQRkT4XMoH+5voKfvHaRqIjwvhg836aPG1OlyQi0qcCMtB7OstSye6D3PXsaiYMTuKPV0zkSEsbS7844KPqREScEXCBXrL7IJc+uIwDh5u7tf3BIy3cOr+YzMRoHru+iJkF6QyIDufNDRU+rlREpH8FXKBHhIWxeV8dt/91FS2t7V1u/9/vbOFQo4c/X3c6qfFRRIaHcd6oDN7dVImnreufFxEJFAEX6OOyE/nd3PGs3HmQny1af9Lmlw17a/nb8t1cP3UIBZkJR9dfOCaTQw0eVpTW9EfJIiL9wrHhc0/FP44fxJaKeh5Yso38jAFMz09ja2U9+w41cdG4TLKTY7HW8vPFG0iKjeR75434ys+fPcJNTISLN9dXcObwNIeOQkSkbwVkoAP8y/kj2FJZzy9e3fiV9b99ewvzpueRlRzDyp0H+dVl40iMifjKNjGRLmaMdPPWhgruvWQMYWGmP0sXEfGJgA30sDDDH6+YwIurykmMiSA/I564yHD++O5WHliyDYBxWYnMLRp83J+fNTaTN9ZXsLrsEKcPSe7P0kVEfCJgAx0gLiqcG6blfmXdH6+cyPXTcnliaSm3zxiG6wRX3+cUpBPhMjy7YrcCXUSCQkAH+okU5iRTePXJQzohOoIbp+Xy6MelnDE0hX8+wZW8iEigCLheLn3p32cVcObwVH7y8npKdh90uhwRkVMS0oEe7grjgasKyUyM5ranVlFZ1+R0SSIivRbSgQ6QHBfJo9cXcbi5lfuO6TEjIhJIQj7QAUZmDmD2uIEs/eIA7e09GydGRMRfKNC9puSlUtvoYXNFvdOliIj0igLda3JeCgDLS6sdrkREpHcU6F7ZybEMTonhsx0KdBEJTAr0TqYMTWV5aY3a0UUkICnQO5mSl8qhBg9bKtWOLiKBR4HeyZft6Gp2EZFApEDvRO3oIhLIugx0Y8xgY8wSY8xGY8wGY8xdx9nGGGPuN8ZsM8Z8bowp9E25vqd2dBEJVN25Qm8FfmCtHQ1MAb5jjBl9zDYXAfne1zzgoT6tsh+pHV1EAlWXgW6t3WetLfG+rwc2AVnHbDYHWGA7fAYkGWMG9nm1/eBof3Q1u4hIgOlRG7oxJheYCCw/5qMsoKzTcjlfD32MMfOMMcXGmOKqqqqeVdpPvmxHX7ZdgS4igaXbgW6MiQdeAr5nra3rzc6stY9Ya4ustUVut7s3f0S/OGdkOh9uraKuyeN0KSIi3datQDfGRNAR5k9baxceZ5M9QOcZIrK96wLSZYXZNLe288a6fU6XIiLSbd3p5WKAx4FN1trfn2CzxcD13t4uU4Baa23ApuH47ETy3HG8VBKwv5NEJAR15wr9TOA6YKYxZo33dbEx5jZjzG3ebV4HdgDbgEeBO3xTbv8wxnB5YTYrSmsoq2lwuhwRkW7pck5Ra+1S4PgzLf/fNhb4Tl8V5Q8unZjF797ewsKSPdx1Xr7T5YiIdElPip5AVlIMU/NSWbi6nI7fVyIi/k2BfhKXFWazq7pBE0iLSEBQoJ/ErLGZxES4dHNURAKCAv0k4qPCmTU2k1fX7qW5tc3pckRETkqB3oVLJ2ZR19TKks3++WSriMiXFOhdOHNYKmnxkSxao2YXEfFvCvQuhLvC+IfTBvHe5v0aCkBE/JoCvRsunZhFS2s7b66rcLoUEZETUqB3w/jsRIamxfHyajW7iIj/UqB3gzGGORMG8VlpNRW1TU6XIyJyXAr0brp0QhbWwuK1ukoXEf+kQO+m3LQ4JgxO4pXVe50uRUTkuBToPTB73EA27qtjz6FGp0sREfkaBXoPnFOQDsAHW/Y7XImIyNcp0HtgmDuOwSkxLNmsQBcR/6NA7wFjDOeMTOeTbdU0eTS2i4j4FwV6D51TkE6jp43lpTVOlyIi8hUK9B6ampdKdESYml1ExO8o0HsoOsLFtGFpLNmyXzMZiYhfUaD3wjkj3eyqbqD0wBGnSxEROUqB3gszRnZ0X3xfzS4i4kcU6L0wOCWW/PR4PtiiSS9ExH8o0HtpZkE6y0urOdLc6nQpIiKAAr3Xzh7hxtNm+XR7tdOliIgACvReOz03mdhIFx9uVbOLiPgHBXovRYW7mDYslQ+2qvuiiPgHBfopOHuEm7KaRnZWNzhdioiIAv1UnD2io/vihxp9UUT8gAL9FOSkxjI0LU7t6CLiFxTop+jsEW4+3aHRF0XEeQr0U3T2CDdNnnZW7tToiyLiLAX6KZqcl0JkeBgf6qlREXGYAv0UxUaGM3loitrRRcRxCvQ+MD0/jS/2H6ayrsnpUkQkhHUZ6MaYJ4wx+40x60/w+QxjTK0xZo339bO+L9O/FeWmAFCy66DDlYhIKOvOFfqTwKwutvnYWjvB+7rv1MsKLGMGJRDpCqNktwJdRJzTZaBbaz8C1IXjJKLCXYzLTqRk9yGnSxGRENZXbehTjTFrjTFvGGPG9NGfGVAKc5JYV15Lc6v6o4uIM/oi0EuAIdba8cD/Aq+caENjzDxjTLExpriqKrh6hRTmJNPS1s6GvXVOlyIiIeqUA91aW2etPex9/zoQYYxJO8G2j1hri6y1RW63+1R37VcKhyQDujEqIs455UA3xmQaY4z3/STvnxlysz5kJESTlRTDarWji4hDwrvawBjzDDADSDPGlAP/AUQAWGsfBr4J3G6MaQUagSttiA4QXjgkmZWlun8sIs7oMtCttVd18fkDwAN9VlEAK8xJ4u9r97L3UCODkmKcLkdEQoyeFO1Dp3/Zjq7+6CLiAAV6Hxo1MIHoiDBW6caoiDhAgd6HIlxhnJaVpAeMRMQRCvQ+VjgkmY17azXhhYj0OwV6H5ucl4KnzfLp9pDruSkiDlOg97Fpw1IZEBXO6+v2OV2KiIQYBXofiwp3cd7oDN7eWImnrd3pckQkhCjQfeDicQOpbfSo2UVE+pUC3Qem56cRF+nijfVqdhGR/qNA94HoCBfnjsrgrQ2VtKrZRUT6iQLdRy4el0nNkRaWa2wXEeknCnQfOXtEOjERLvV2EZF+o0D3kZhIFzML0nlrQwVt7SE5+KSI9DMFug9dNC6TA4dbKN6pZhcR8T0Fug+dPcJNhMvw/ub9TpciIiFAge5DA6IjmDw0lfcU6CLSDxToPjazIJ1t+w+zq/qI06WISJBToPvYuaPSAXhvk67SRcS3FOg+NiQ1juHp8WpHFxGfU6D3g3ML0lleWk19k8fpUkQkiCnQ+8G5ozLwtFk+/uKA06WISBBToPeDwpwkEmMieHdTpdOliEgQU6D3g3BXGOeMdPPBlio9NSoiPqNA7yczR2VQc6SFNWUHnS5FRIKUAr2fnD3CjStMT42KiO8o0PtJYkwERUOS1R9dRHxGgd6Pzh2VzuaKevYcanS6FBEJQgr0fjSzIANAzS4i4hMK9H40zB3HkNRY3lf3RRHxAQV6PzLGMLMgnWXbq2lsaXO6HBEJMgr0fnZuQQbNre0s266nRkWkbynQ+9mkoSnERbo0RrqI9DkFej+LDA9jer6b9zftx1o9NSoifUeB7oCZo9KpqGtiw946p0sRkSCiQHfAzIJ0XGGGVz/f53QpIhJEugx0Y8wTxpj9xpj1J/jcGGPuN8ZsM8Z8bowp7Psyg0tafBTnjHSzsKSc1rZ2p8sRkSDRnSv0J4FZJ/n8IiDf+5oHPHTqZQW/uUWD2V/fzEdfVDldiogEiS4D3Vr7EVBzkk3mAAtsh8+AJGPMwL4qMFjNLEgnNS6S51eWO12KiASJvmhDzwLKOi2Xe9d9jTFmnjGm2BhTXFUV2lemEa4w/mliFu9trqT6cLPT5YhIEOjXm6LW2kestUXW2iK3292fu/ZLc4sG42mzvLJmr9OliEgQ6ItA3wMM7rSc7V0nXRiZOYDx2Ym8UFymPukicsr6ItAXA9d7e7tMAWqtteqP101ziwazuaKedXtqnS5FRAJcd7otPgN8Cow0xpQbY242xtxmjLnNu8nrwA5gG/AocIfPqg1C/zh+EJHhYSws0ZcaETk14V1tYK29qovPLfCdPqsoxCTGRHBuQTqvfr6Pn8weRbhLz3qJSO8oPfzAnAmDOHC4mWXbq50uRUQCmALdD8wYmc6A6HAWqbeLiJwCBbofiI5wcdHYTN7aUEGTRxNfiEjvKND9xJwJWRxubtV8oyLSawp0PzElL5X0AVEsWqPeLiLSOwp0P+EKM/zj+EEs2VxFbYPH6XJEJAAp0P3InAmDaGlr58USDdglIj2nQPcj47ISOWt4Gr96YxNLv9Ak0iLSMwp0P2KM4cFrCxnmjufbTxWzXsMBiEgPKND9TEJ0BPNvmkRSbCQ3/mUlZTUNTpfUb2obPDz5SSk/fnmdfpmJ9IJxapS/oqIiW1xc7Mi+A8G2/fVc/tCnZCfHsPCOaUSFu5wuySeaPG18uqOav6/Zy2vr9tHc2k5keBgtre2cNyqdG6blcriplZ3VDdQ2evh/M4cTF9XliBUiQcsYs8paW3S8z/Qvw08NTx/Ab795GvOeWsV/v72VH188yumS+tSK0hr+/OF2Ptl+gCZPO/FR4cwtyubKM3LISY1l/ic7efTjHby76av98j1t7fz0H0Y7VLWIf1Og+7ELxmRy7ZQcHvloB9Pz05ieHxyTgjy/sowfv7yO1PhIrigazDkF6UzJSyU64v++hfy/c/O54cxcVpbWkJEQzZDUWH75xmb+8kkplxVmMWZQooNHIOKf1OTi5xpb2rjkgaUcavTw5l3TSY2PcrqkXmtvt/zmrS08/OF2puen8adrCkmIjuj2z9c2eJj53x+QkxrLS7dNIyzMHP1zv3wvEuxO1uSim6J+LibSxf1XTaS20cNN84uprGtyuqTjKqtpYNm2A7y5voLni8t47fN9rN9TS12Th62V9fzve18w+3+X8vCH27l6cg5P3HhGj8IcIDE2gntmj2L17kM8u7KM0gNH+NcX1jLyp2/wzsZKHx2ZSODQFXqAeGtDBd9/bg3xUeE8fN3pFOYkO10SG/fWsXjtXt7dVMm2/Ye73H5iThJXnZHD3KJsjOndFbW1lqse/YzVuw/haWsnwhVGVHgYYwYl8sy8Kb36M0UCycmu0BXoAWRzRR3zFqyioraJ3849jTkTshyr5YMt+7llfsf5m5yXwnmjMijITCAhJpyE6AgON7eyq/oIO6sbGBAdznmjMshIiO6TfW/bf5jvPF3CjAI3t5yVx/PFZfz2rS188MMZ5KbF9ck+RPyVAj2IHGpoYd6CVXy+5xBv3vUNRwJs5c4arnt8OXlp8fz1lsmkxEX2ew2dVdY1Me1X73Pr9Dzuvqjg6Pr6Jg/xUeG9/jYg4o/Uhh5EkmIjuf+qiUS4wvi3lz6nvb1/fyFv2FvLTU+uZFBiDAtunuR4mANkJERzzsh0XlxVjqetHYAtFfVM/eX73LqgmJbWdocrFOkfCvQAlJkYzU9nj2ZFaQ1PL9/Vb/tdV17L9Y+vID4qnKdumUyaH/W4uWrSYA4cbua9Tfupa/Jw219XYYB3N+3n+8+tobVNoS7BT4EeoOYWZTM9P41fvrG5X4YH+GhrFVc+8inRES6evmUyWUkxPt9nT5w9wk1mQjTPrNjNvzy3lrKaBp741hncc/EoXlu3z5FvMyL9TYEeoIwx/Ory0zDADX9ZwTMrdnO4udUn+3p5dTk3PbmSnNQ4Ft4xjTx3vE/2cyrCXWHMLcrmw61VvLupkp/MHsUZuSnc+o08vn/eCBaW7OHWBcXsqj7idKkiPqNAD2BZSTE8cE0hEWFh/GjhOib/17v88o1Nfda8UFbTwLefKub7z63ljNwUnvv2lD7rqeIL/1w0mMjwMC6dMIgbpuUeXX/nucP5yexRfLqjmvN//xG/fnOzz375iThJvVyCgLWWkt2HWPDpThat2csFozO4/6qJX3mUvicaW9p48INt/PmjHbiM4bszh3PL9KEBMUBYZV0T7vio4z45WlnXxK/f3MzCkj0MTIzmvjljOX90hgNVivSeui2GkL98Usq9f9/IlLwUHr2+iAE9fBpzyZb9/GzRespqGrl0wiDuvmgUmYn+e1XeGyW7D/LjhevYXFHPrDGZ3DtnjF9/8xDpTIEeYhat2cMPnl9LwcABPH3zFBJjuw71qvpmfr54A6+t28cwdxz/9U/jmJKX2g/VOsPT1s4jH+3gf977And8FC/fMY10hboEAPVDDzFzJmTx6PVFbK04zA1/WdFle/Hr6/ZxwR8+5J1NlfzwghG8ftf0oA5zgAhXGN85ZzgvfHsqNUdauGn+So6oXV0CnAI9SJ1TkM4DV09k3Z6OB4EaW9q+tk1to4c7n1nNHU+XkJMSy+t3nsV3Z+YHRFt5Xxk/OIkHrylk07567ni65OiDSdBxb0IkkKjJJcgtWrOH7z23hql5qfz68tMYnBILdMyIdOuCVZTVNHDXufncPmMY4a7Q/f3+zIrd/GjhOvLS4vC0t3OgvoUB0eFcNSmHqyfnqI1d/Iba0EPci6vKuefldVgLN56Zy5hBCdzz8nqiI1w8dG0hZ+SmOF2iX5i/bCfvbqokNS6StPgotlUd5oMtVYSHGS6dmMV9c8YQG6k5YcRZCnRh76FGfv/OVl4qKcdaOC07kT9fdzoDE/3riU9/s/PAERZ8uosnl5UyLjuJx28o8qshDyT0KNDlqI1761i2/QDXThnS637qoejtDRXc+exqMhKimf+tSRqmVxyjXi5y1OhBCdwyPU9h3kMXjMnkb7dOoa7Rw2UPLWP9nlqnSxL5GgW6SDcV5iTz0u3TiIlwcdUjn1G8s8bpkkS+QoEu0gN57niev20qaQOiuO7xFSxeu5eXvDedb3pyJftqG50uUUJYtwLdGDPLGLPFGLPNGHP3cT6/0RhTZYxZ433d0veliviHrKQYnv/2VIakxnLnM6v5wQtrWbxmL59sO8AdT5doQg1xTJd9sIwxLuBPwPlAObDSGLPYWrvxmE2fs9Z+1wc1ivgd94Aonr9tKku/OMAwdzzD0+N5a0MFdzxdwn++tpH75ox1ukQJQd25Qp8EbLPW7rDWtgDPAnN8W5aI/0uIjuDicQMZmTkAV5jh4nEDuXX6UBZ8uouFJeVOlychqDtPSWQBZZ2Wy4HJx9nucmPMN4CtwPettWXHbmCMmQfMA8jJyel5tSJ+7t9nFfB5eS13L1zH35bvJjkuEveAKK4oGsz4wUlOlydBrq9uiv4dyLXWnga8A8w/3kbW2kestUXW2iK3291HuxbxH+GuMB64upA54wcRGR5GWU0Di9fsZc6fPuGuZ1dTftD30wVK6OrOFfoeYHCn5WzvuqOstdWdFh8DfnPqpYkEJveAKH47d/zR5fomDw9/uJ3HPi7ljfUV3DlzOLedHdpj54hvdOdv1Eog3xgz1BgTCVwJLO68gTFmYKfFS4BNfVeiSGAbEB3Bv15YwJIfzuD8URn87u2tXPbQMr6orHe6NAkyXV6hW2tbjTHfBd4CXMAT1toNxpj7gGJr7WLgTmPMJUArUAPc6MOaRQLSoKQY/nRNIRd/vo+fLlrP7PuXMnVYKsPT4xnmjmfqsFSGHjOkQFu7xcBxp9QTOZbGchFxwIHDzfz+na2sLTvE9qrDNHk6+q6flp3IJeMH0W4tn2yrZuXOGqIjXJw/KoMLx2Zw5vC0E45Xb61lc0U9hxo8TB0W3BOUhDINziXix9rbLWUHG3hnYyWL1uxlnXecmGHuOKYNS6O20cOSzfupb25lYGI0d19UwCXjB2GMwVrL2vJaXl27l7c3VrK7puOm6+//eTyXFWY7eVjiIwp0kQBSVtNAZHjYVybVaG5tY+kXB/jDu1tZv6eOM3KTmTosjVfX7mXHgSNEuAxnDk/jwjGZ/H3tXlburGH+tyYxbXgaAAePtLC67CAzRqSr+SbAKdBFgkRbu+WF4jJ++9YWqo+0MHloCpcVZnHRuIEkRHdMBl7b6GHuw8vYV9vEY9cX8cHWKhYs28mRljZumDqEn18yBmMU6oFKgS4SZBpaWjnS3IZ7wPEn2yg/2MA/PbiMqvpmjIHZ4waSEBPB35bv5pazhnLP7FEK9QB1skDXfFoiASg2Mvyk0+FlJ8ey4KZJPF9cxtWTcsjPGIC1lkhXGI8tLcXT1k56QjSrdx+i/GAD/3L+CC4Yk9mPRyC+oCt0kRBireWeV9bzt+W7Achzd3ST3FXdwG8uP43LT9eNVH+nK3QRAcAYw3/OGcu1k4cwMDGa5LhIjjS3Mu+pYn7wwlrqmzzceOZQp8uUXtIVuojQ5GnjzmdW8/bGStLio8hLi2NYejzf/kae5k/1M5pTVEROKjrCxYPXFPKLOWOYWeCm3VoWrdnD9U+soOZIi9PlSTepyUVEgI6RIq+bmnt0uWT3Qa585DNu/+sqnrp5MpHhuv7zdzpDInJchTnJ/Oby01heWsN/LF6PU82z0n26QheRE7p0YhZbK+t58IPteNosd52bz+CUWKfLkhNQoIvISf3wgpF42tqZv2wXr6zewzdPz+au8/IZmBjjdGlyDDW5iMhJhYUZ7pk9mg//bQbXTM5h4eo9zPrjx7yzsdLp0uQYCnQR6ZaBiTHcO2csb3/vGwxOieHWBcXc9/eNtLS2O12aeCnQRaRHctPieOn2adw4LZcnPill7sPLNFeqn1Cgi0iPRYW7+PklY3j42kJ2VB1h9v1LWbJ5v9NlhTzdFBWRXps1diAFmQnc/nQJ33pyJeePzmBISiyZidEU5aYwYXCS0yWGFAW6iJyS3LQ4Xr5jGr98fRMfbq3i4y+qjk6pd/NZQ/nXC0cSHXH8afOkbynQReSURUe4uHfOWKBjRMeDDR7+8M5WHl9aykdbq/jDFRMYm5XocJXBT23oItKnjDGkxEXyi0vHMv+mSdQ1ebjswWU8u2K306UFPQW6iPjM2SPcvHnXN5icl8LdC9fxo4XraG5tc7qsoKVAFxGfSo6L5MlvTeL2GcN4ZsVu5jzwCU99tkujOPqAAl1EfM4VZvj3WQU8fG0hbe2Wn76ynkn/9S63PbWK/XVNTpcXNDTBhYj0K2stm/bVs2jNHhZ8uou4KBd/uGIC0/PdTpcWEDTBhYj4DWMMowcl8KOLR7H4u2eSHBvJ9U+s4DdvbtbV+inSFbqIOKqhpZWfLdrAi6vKMQZOz0nm4nEDuXpyjvqvH8fJrtAV6CLiF7ZW1vPGugreWL+PzRX1DE6J4d5LxjCzIMPp0vyKAl1EAsqn26v56aL1bNt/mPNGpXP+6AxGZiaQnx5PXFRoPw+pQBeRgNPS2s7jS0t5cMk26ptbATAGioYkc+GYTC4ck0l2cgzGGIcr7V8KdBEJWO3tlrKDDWyuqGf9nlre2VjJ5op6AKIjwkiLj8I9IIrp+W6uOGMwWUnBPZOSAl1Egsru6gaWbNnPnkONVNU3U36wgeJdB4GOp1Pz0+Npbm2n2dNOTmosZ49wM3pgAmFhgX81r0AXkaBXfrCB51eW8eKqcg41eogMDyPCFUZVfTMAafFRjMtKIC0+itT4KPLccZw5PC3grugV6CISsvbXN/Hx1gN8uLWKHQcOc6C+heojzXjaOrIvNzWWiTnJZCZGk5kQTUZCNOkJUbjjo0iNjyQmwuVX7fQnC/Ru3S42xswC/gdwAY9Za391zOdRwALgdKAauMJau/NUihYR6QvpA6K5/PRsLj89++g6ay1bKw/zybYDfLLtACtKa6isa6K1/fgXuDERLmIjXSTGRJAQE0FybIQ3+KNxx0fSbjtu4rZby/D0eE7LTsI9IKq/DvGoLgPdGOMC/gScD5QDK40xi621GzttdjNw0Fo73BhzJfBr4ApfFCwicqqMMYzMHMDIzAHcdNZQoOPma/WRFirrmqiqb2Z/fRPVR1po8rTT2NLKkZY2ahs91DV6qDrczPq9dRw43MyJGjkyE6KJjXTRZi1t7ZaW1vaOdv3WNm45K48fXjiyz4+rO1fok4Bt1todAMaYZ4E5QOdAnwP83Pv+ReABY4yxTrXniIj0UFiYwT0gqkdX1p62dg4eacEVZogMD8MCm/fV83n5ITbsrcPT1o4rzOAyHZ9HhYcRFeHi9NxknxxDdwI9CyjrtFwOTD7RNtbaVmNMLZAKHOi8kTFmHjAPICcnp5cli4j4hwhXGOkJ0V9ZN2loCpOGpjhST78OzmWtfcRaW2StLXK7NbKaiEhf6k6g7wEGd1rO9q477jbGmHAgkY6boyIi0k+6E+grgXxjzFBjTCRwJbD4mG0WAzd4338TeF/t5yIi/avLNnRvm/h3gbfo6Lb4hLV2gzHmPqDYWrsYeBx4yhizDaihI/RFRKQfdasfurX2deD1Y9b9rNP7JmBu35YmIiI9oRmLRESChAJdRCRIKNBFRIKEY4NzGWOqgF29/PE0jnloKUSE4nGH4jFDaB53KB4z9Py4h1hrj/sgj2OBfiqMMcUnGm0smIXicYfiMUNoHncoHjP07XGryUVEJEgo0EVEgkSgBvojThfgkFA87lA8ZgjN4w7FY4Y+PO6AbEMXEZGvC9QrdBEROYYCXUQkSARcoBtjZhljthhjthlj7na6Hl8wxgw2xiwxxmw0xmwwxtzlXZ9ijHnHGPOF9/amWS4AAANNSURBVL++mfbEYcYYlzFmtTHmVe/yUGPMcu85f8476mfQMMYkGWNeNMZsNsZsMsZMDYVzbYz5vvfv93pjzDPGmOhgPNfGmCeMMfuNMes7rTvu+TUd7vce/+fGmMKe7CugAr3T/KYXAaOBq4wxo52tyidagR9Ya0cDU4DveI/zbuA9a20+8J53ORjdBWzqtPxr4A/W2uHAQTrmsA0m/wO8aa0tAMbTcexBfa6NMVnAnUCRtXYsHSO5fjkfcbCd6yeBWcesO9H5vQjI977mAQ/1ZEcBFeh0mt/UWtsCfDm/aVCx1u6z1pZ439fT8Q88i45jne/dbD5wqTMV+o4xJhuYDTzmXTbATDrmqoUgO25jTCLwDTqGoMZa22KtPUQInGs6RnuN8U6KEwvsIwjPtbX2IzqGFe/sROd3DrDAdvgMSDLGDOzuvgIt0I83v2mWQ7X0C2NMLjARWA5kWGv3eT+qADIcKsuX/gj8G9DuXU4FDllrW73LwXbOhwJVwF+8zUyPGWPiCPJzba3dA/wO2E1HkNcCqwjuc93Zic7vKWVcoAV6SDHGxAMvAd+z1tZ1/sw7I1RQ9Tk1xvwDsN9au8rpWvpROFAIPGStnQgc4ZjmlSA918l0XI0OBQYBcXy9WSIk9OX5DbRA7878pkHBGBNBR5g/ba1d6F1d+eXXL+9/9ztVn4+cCVxijNlJR3PaTDral5O8X8sh+M55OVBurV3uXX6RjoAP9nN9HlBqra2y1nqAhXSc/2A+152d6PyeUsYFWqB3Z37TgOdtN34c2GSt/X2njzrP3XoDsKi/a/Mla+2PrLXZ1tpcOs7t+9baa4AldMxVC0F23NbaCqDMGDPSu+pcYCNBfq7paGqZYoyJ9f59//K4g/ZcH+NE53cxcL23t8sUoLZT00zXrLUB9QIuBrYC24F7nK7HR8d4Fh1fwT4H1nhfF9PRnvwe8AXwLpDidK0+/H8wA3jV+z4PWAFsA14Aopyur4+PdQJQ7D3frwDJoXCugXuBzcB64CkgKhjPNfAMHfcJPHR8I7v5ROcXMHT05NsOrKOjF1C396VH/0VEgkSgNbmIiMgJKNBFRIKEAl1EJEgo0EVEgoQCXUQkSCjQRUSChAJdRCRI/H+/Iiw8oqIcewAAAABJRU5ErkJggg==\n", |
310 |
| - "text/plain": [ |
311 |
| - "<Figure size 432x288 with 1 Axes>" |
312 |
| - ] |
313 |
| - }, |
314 |
| - "metadata": { |
315 |
| - "needs_background": "light" |
316 |
| - }, |
317 |
| - "output_type": "display_data" |
318 |
| - } |
319 |
| - ], |
| 272 | + "outputs": [], |
320 | 273 | "source": [
|
321 | 274 | "qc = TorchCircuit.apply\n",
|
322 | 275 | "\n",
|
|
358 | 311 | },
|
359 | 312 | {
|
360 | 313 | "cell_type": "code",
|
361 |
| - "execution_count": 11, |
| 314 | + "execution_count": null, |
362 | 315 | "metadata": {},
|
363 | 316 | "outputs": [],
|
364 | 317 | "source": [
|
|
380 | 333 | },
|
381 | 334 | {
|
382 | 335 | "cell_type": "code",
|
383 |
| - "execution_count": 12, |
| 336 | + "execution_count": null, |
384 | 337 | "metadata": {},
|
385 |
| - "outputs": [ |
386 |
| - { |
387 |
| - "name": "stderr", |
388 |
| - "output_type": "stream", |
389 |
| - "text": [ |
390 |
| - "\r", |
391 |
| - "0it [00:00, ?it/s]" |
392 |
| - ] |
393 |
| - }, |
394 |
| - { |
395 |
| - "name": "stdout", |
396 |
| - "output_type": "stream", |
397 |
| - "text": [ |
398 |
| - "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ./data/MNIST/raw/train-images-idx3-ubyte.gz\n" |
399 |
| - ] |
400 |
| - }, |
401 |
| - { |
402 |
| - "name": "stderr", |
403 |
| - "output_type": "stream", |
404 |
| - "text": [ |
405 |
| - "9920512it [00:09, 1033422.94it/s] \n" |
406 |
| - ] |
407 |
| - }, |
408 |
| - { |
409 |
| - "name": "stdout", |
410 |
| - "output_type": "stream", |
411 |
| - "text": [ |
412 |
| - "Extracting ./data/MNIST/raw/train-images-idx3-ubyte.gz to ./data/MNIST/raw\n" |
413 |
| - ] |
414 |
| - }, |
415 |
| - { |
416 |
| - "name": "stderr", |
417 |
| - "output_type": "stream", |
418 |
| - "text": [ |
419 |
| - "\r", |
420 |
| - "0it [00:00, ?it/s]" |
421 |
| - ] |
422 |
| - }, |
423 |
| - { |
424 |
| - "name": "stdout", |
425 |
| - "output_type": "stream", |
426 |
| - "text": [ |
427 |
| - "Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ./data/MNIST/raw/train-labels-idx1-ubyte.gz\n" |
428 |
| - ] |
429 |
| - }, |
430 |
| - { |
431 |
| - "name": "stderr", |
432 |
| - "output_type": "stream", |
433 |
| - "text": [ |
434 |
| - "32768it [00:00, 91809.04it/s] \n", |
435 |
| - "0it [00:00, ?it/s]" |
436 |
| - ] |
437 |
| - }, |
438 |
| - { |
439 |
| - "name": "stdout", |
440 |
| - "output_type": "stream", |
441 |
| - "text": [ |
442 |
| - "Extracting ./data/MNIST/raw/train-labels-idx1-ubyte.gz to ./data/MNIST/raw\n", |
443 |
| - "Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw/t10k-images-idx3-ubyte.gz\n" |
444 |
| - ] |
445 |
| - }, |
446 |
| - { |
447 |
| - "name": "stderr", |
448 |
| - "output_type": "stream", |
449 |
| - "text": [ |
450 |
| - "1654784it [00:02, 567437.39it/s] \n", |
451 |
| - "0it [00:00, ?it/s]" |
452 |
| - ] |
453 |
| - }, |
454 |
| - { |
455 |
| - "name": "stdout", |
456 |
| - "output_type": "stream", |
457 |
| - "text": [ |
458 |
| - "Extracting ./data/MNIST/raw/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw\n", |
459 |
| - "Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz\n" |
460 |
| - ] |
461 |
| - }, |
462 |
| - { |
463 |
| - "name": "stderr", |
464 |
| - "output_type": "stream", |
465 |
| - "text": [ |
466 |
| - "8192it [00:00, 29906.12it/s] " |
467 |
| - ] |
468 |
| - }, |
469 |
| - { |
470 |
| - "name": "stdout", |
471 |
| - "output_type": "stream", |
472 |
| - "text": [ |
473 |
| - "Extracting ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw\n", |
474 |
| - "Processing...\n", |
475 |
| - "Done!\n", |
476 |
| - "Dataset MNIST\n", |
477 |
| - " Number of datapoints: 40\n", |
478 |
| - " Root location: ./data\n", |
479 |
| - " Split: Train\n", |
480 |
| - " StandardTransform\n", |
481 |
| - "Transform: Compose(\n", |
482 |
| - " ToTensor()\n", |
483 |
| - " )\n" |
484 |
| - ] |
485 |
| - }, |
486 |
| - { |
487 |
| - "name": "stderr", |
488 |
| - "output_type": "stream", |
489 |
| - "text": [ |
490 |
| - "\n" |
491 |
| - ] |
492 |
| - } |
493 |
| - ], |
| 338 | + "outputs": [], |
494 | 339 | "source": [
|
495 | 340 | "import numpy as np\n",
|
496 | 341 | "import torchvision\n",
|
|
533 | 378 | },
|
534 | 379 | {
|
535 | 380 | "cell_type": "code",
|
536 |
| - "execution_count": 13, |
| 381 | + "execution_count": null, |
537 | 382 | "metadata": {},
|
538 | 383 | "outputs": [],
|
539 | 384 | "source": [
|
|
563 | 408 | },
|
564 | 409 | {
|
565 | 410 | "cell_type": "code",
|
566 |
| - "execution_count": 14, |
| 411 | + "execution_count": null, |
567 | 412 | "metadata": {},
|
568 | 413 | "outputs": [],
|
569 | 414 | "source": [
|
|
589 | 434 | },
|
590 | 435 | {
|
591 | 436 | "cell_type": "code",
|
592 |
| - "execution_count": 47, |
| 437 | + "execution_count": null, |
593 | 438 | "metadata": {},
|
594 |
| - "outputs": [ |
595 |
| - { |
596 |
| - "name": "stdout", |
597 |
| - "output_type": "stream", |
598 |
| - "text": [ |
599 |
| - "-0.7789\n", |
600 |
| - "-0.8216\n", |
601 |
| - "-0.8955\n", |
602 |
| - "-0.99\n", |
603 |
| - "-0.8736\n", |
604 |
| - "-0.921\n", |
605 |
| - "-0.9768\n", |
606 |
| - "-0.926\n", |
607 |
| - "-0.8887\n", |
608 |
| - "-0.8338\n" |
609 |
| - ] |
610 |
| - } |
611 |
| - ], |
| 439 | + "outputs": [], |
612 | 440 | "source": [
|
613 | 441 | "epochs = 10\n",
|
614 | 442 | "for epoch in range(epochs):\n",
|
|
638 | 466 | },
|
639 | 467 | {
|
640 | 468 | "cell_type": "code",
|
641 |
| - "execution_count": 51, |
| 469 | + "execution_count": null, |
642 | 470 | "metadata": {},
|
643 |
| - "outputs": [ |
644 |
| - { |
645 |
| - "name": "stdout", |
646 |
| - "output_type": "stream", |
647 |
| - "text": [ |
648 |
| - "Accuracy is: 1.0\n" |
649 |
| - ] |
650 |
| - } |
651 |
| - ], |
| 471 | + "outputs": [], |
652 | 472 | "source": [
|
653 | 473 | "accuracy = 0\n",
|
654 | 474 | "number = 0\n",
|
|
0 commit comments