Skip to content

Commit 711a165

Browse files
author
Patrick Huembeli
committed
Clear outputs
1 parent 9e8dcf5 commit 711a165

File tree

1 file changed

+23
-203
lines changed

1 file changed

+23
-203
lines changed

Notebooks/pytorch-qiskit-0.1-u3.ipynb

+23-203
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
"cells": [
33
{
44
"cell_type": "code",
5-
"execution_count": 1,
5+
"execution_count": null,
66
"metadata": {},
77
"outputs": [],
88
"source": [
@@ -22,7 +22,7 @@
2222
},
2323
{
2424
"cell_type": "code",
25-
"execution_count": 1,
25+
"execution_count": null,
2626
"metadata": {},
2727
"outputs": [],
2828
"source": [
@@ -33,18 +33,9 @@
3333
},
3434
{
3535
"cell_type": "code",
36-
"execution_count": 2,
36+
"execution_count": null,
3737
"metadata": {},
38-
"outputs": [
39-
{
40-
"name": "stderr",
41-
"output_type": "stream",
42-
"text": [
43-
"/Users/phuembeli/Qiskit_develop/qiskit-terra/qiskit/pulse/channels/pulse_channels.py:25: DeprecationWarning: Channels have been migrated. Please use `from qiskit.pulse.channels import X` rather than `from qiskit.pulse.channels.pulse_channels import X`.\n",
44-
" DeprecationWarning)\n"
45-
]
46-
}
47-
],
38+
"outputs": [],
4839
"source": [
4940
"from qiskit import QuantumRegister,QuantumCircuit,ClassicalRegister,execute\n",
5041
"from qiskit.circuit import Parameter\n",
@@ -54,7 +45,7 @@
5445
},
5546
{
5647
"cell_type": "code",
57-
"execution_count": 3,
48+
"execution_count": null,
5849
"metadata": {},
5950
"outputs": [],
6051
"source": [
@@ -63,7 +54,7 @@
6354
},
6455
{
6556
"cell_type": "code",
66-
"execution_count": 4,
57+
"execution_count": null,
6758
"metadata": {},
6859
"outputs": [],
6960
"source": [
@@ -73,7 +64,7 @@
7364
},
7465
{
7566
"cell_type": "code",
76-
"execution_count": 5,
67+
"execution_count": null,
7768
"metadata": {},
7869
"outputs": [],
7970
"source": [
@@ -89,7 +80,7 @@
8980
},
9081
{
9182
"cell_type": "code",
92-
"execution_count": 6,
83+
"execution_count": null,
9384
"metadata": {},
9485
"outputs": [],
9586
"source": [
@@ -129,7 +120,7 @@
129120
},
130121
{
131122
"cell_type": "code",
132-
"execution_count": 7,
123+
"execution_count": null,
133124
"metadata": {
134125
"ExecuteTime": {
135126
"end_time": "2019-10-01T16:09:30.598730Z",
@@ -201,7 +192,7 @@
201192
},
202193
{
203194
"cell_type": "code",
204-
"execution_count": 8,
195+
"execution_count": null,
205196
"metadata": {},
206197
"outputs": [],
207198
"source": [
@@ -246,17 +237,9 @@
246237
},
247238
{
248239
"cell_type": "code",
249-
"execution_count": 9,
240+
"execution_count": null,
250241
"metadata": {},
251-
"outputs": [
252-
{
253-
"name": "stdout",
254-
"output_type": "stream",
255-
"text": [
256-
"tensor([[0.0206, 0.0210, 0.0104]])\n"
257-
]
258-
}
259-
],
242+
"outputs": [],
260243
"source": [
261244
"# x = torch.tensor([np.pi/4, np.pi/4, np.pi/4], requires_grad=True)\n",
262245
"x = torch.tensor([[0.0, 0.0, 0.0]], requires_grad=True)\n",
@@ -284,39 +267,9 @@
284267
},
285268
{
286269
"cell_type": "code",
287-
"execution_count": 10,
270+
"execution_count": null,
288271
"metadata": {},
289-
"outputs": [
290-
{
291-
"name": "stderr",
292-
"output_type": "stream",
293-
"text": [
294-
"100%|██████████| 100/100 [00:09<00:00, 10.37it/s]\n"
295-
]
296-
},
297-
{
298-
"data": {
299-
"text/plain": [
300-
"[<matplotlib.lines.Line2D at 0x1277a0b70>]"
301-
]
302-
},
303-
"execution_count": 10,
304-
"metadata": {},
305-
"output_type": "execute_result"
306-
},
307-
{
308-
"data": {
309-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXxV9Z3/8dc3N3tC9psEEkIIBMImECObUhE3lBlxtIz7Uheqtj9tp50ZW9tOtTOPrtN2HKvWrYK17ijUfcMFUSAEkB2BAAmQEBJIAtluku/vj1yZiEAWcnPu8n4+HvfhPeeecD7HA++c+z3f8/0aay0iIhL4wpwuQERE+oYCXUQkSCjQRUSChAJdRCRIKNBFRIJEuFM7TktLs7m5uU7tXkQkIK1ateqAtdZ9vM8cC/Tc3FyKi4ud2r2ISEAyxuw60WdqchERCRIKdBGRIKFAFxEJEgp0EZEgoUAXEQkSCnQRkSChQBcRCRIhF+hvrt/HvtpGp8sQEelzIRXoTywt5ba/lvCfr21yuhQRkT4XMoH+5voKfvHaRqIjwvhg836aPG1OlyQi0qcCMtB7OstSye6D3PXsaiYMTuKPV0zkSEsbS7844KPqREScEXCBXrL7IJc+uIwDh5u7tf3BIy3cOr+YzMRoHru+iJkF6QyIDufNDRU+rlREpH8FXKBHhIWxeV8dt/91FS2t7V1u/9/vbOFQo4c/X3c6qfFRRIaHcd6oDN7dVImnreufFxEJFAEX6OOyE/nd3PGs3HmQny1af9Lmlw17a/nb8t1cP3UIBZkJR9dfOCaTQw0eVpTW9EfJIiL9wrHhc0/FP44fxJaKeh5Yso38jAFMz09ja2U9+w41cdG4TLKTY7HW8vPFG0iKjeR75434ys+fPcJNTISLN9dXcObwNIeOQkSkbwVkoAP8y/kj2FJZzy9e3fiV9b99ewvzpueRlRzDyp0H+dVl40iMifjKNjGRLmaMdPPWhgruvWQMYWGmP0sXEfGJgA30sDDDH6+YwIurykmMiSA/I564yHD++O5WHliyDYBxWYnMLRp83J+fNTaTN9ZXsLrsEKcPSe7P0kVEfCJgAx0gLiqcG6blfmXdH6+cyPXTcnliaSm3zxiG6wRX3+cUpBPhMjy7YrcCXUSCQkAH+okU5iRTePXJQzohOoIbp+Xy6MelnDE0hX8+wZW8iEigCLheLn3p32cVcObwVH7y8npKdh90uhwRkVMS0oEe7grjgasKyUyM5ranVlFZ1+R0SSIivRbSgQ6QHBfJo9cXcbi5lfuO6TEjIhJIQj7QAUZmDmD2uIEs/eIA7e09GydGRMRfKNC9puSlUtvoYXNFvdOliIj0igLda3JeCgDLS6sdrkREpHcU6F7ZybEMTonhsx0KdBEJTAr0TqYMTWV5aY3a0UUkICnQO5mSl8qhBg9bKtWOLiKBR4HeyZft6Gp2EZFApEDvRO3oIhLIugx0Y8xgY8wSY8xGY8wGY8xdx9nGGGPuN8ZsM8Z8bowp9E25vqd2dBEJVN25Qm8FfmCtHQ1MAb5jjBl9zDYXAfne1zzgoT6tsh+pHV1EAlWXgW6t3WetLfG+rwc2AVnHbDYHWGA7fAYkGWMG9nm1/eBof3Q1u4hIgOlRG7oxJheYCCw/5qMsoKzTcjlfD32MMfOMMcXGmOKqqqqeVdpPvmxHX7ZdgS4igaXbgW6MiQdeAr5nra3rzc6stY9Ya4ustUVut7s3f0S/OGdkOh9uraKuyeN0KSIi3datQDfGRNAR5k9baxceZ5M9QOcZIrK96wLSZYXZNLe288a6fU6XIiLSbd3p5WKAx4FN1trfn2CzxcD13t4uU4Baa23ApuH47ETy3HG8VBKwv5NEJAR15wr9TOA6YKYxZo33dbEx5jZjzG3ebV4HdgDbgEeBO3xTbv8wxnB5YTYrSmsoq2lwuhwRkW7pck5Ra+1S4PgzLf/fNhb4Tl8V5Q8unZjF797ewsKSPdx1Xr7T5YiIdElPip5AVlIMU/NSWbi6nI7fVyIi/k2BfhKXFWazq7pBE0iLSEBQoJ/ErLGZxES4dHNURAKCAv0k4qPCmTU2k1fX7qW5tc3pckRETkqB3oVLJ2ZR19TKks3++WSriMiXFOhdOHNYKmnxkSxao2YXEfFvCvQuhLvC+IfTBvHe5v0aCkBE/JoCvRsunZhFS2s7b66rcLoUEZETUqB3w/jsRIamxfHyajW7iIj/UqB3gzGGORMG8VlpNRW1TU6XIyJyXAr0brp0QhbWwuK1ukoXEf+kQO+m3LQ4JgxO4pXVe50uRUTkuBToPTB73EA27qtjz6FGp0sREfkaBXoPnFOQDsAHW/Y7XImIyNcp0HtgmDuOwSkxLNmsQBcR/6NA7wFjDOeMTOeTbdU0eTS2i4j4FwV6D51TkE6jp43lpTVOlyIi8hUK9B6ampdKdESYml1ExO8o0HsoOsLFtGFpLNmyXzMZiYhfUaD3wjkj3eyqbqD0wBGnSxEROUqB3gszRnZ0X3xfzS4i4kcU6L0wOCWW/PR4PtiiSS9ExH8o0HtpZkE6y0urOdLc6nQpIiKAAr3Xzh7hxtNm+XR7tdOliIgACvReOz03mdhIFx9uVbOLiPgHBXovRYW7mDYslQ+2qvuiiPgHBfopOHuEm7KaRnZWNzhdioiIAv1UnD2io/vihxp9UUT8gAL9FOSkxjI0LU7t6CLiFxTop+jsEW4+3aHRF0XEeQr0U3T2CDdNnnZW7tToiyLiLAX6KZqcl0JkeBgf6qlREXGYAv0UxUaGM3loitrRRcRxCvQ+MD0/jS/2H6ayrsnpUkQkhHUZ6MaYJ4wx+40x60/w+QxjTK0xZo339bO+L9O/FeWmAFCy66DDlYhIKOvOFfqTwKwutvnYWjvB+7rv1MsKLGMGJRDpCqNktwJdRJzTZaBbaz8C1IXjJKLCXYzLTqRk9yGnSxGRENZXbehTjTFrjTFvGGPG9NGfGVAKc5JYV15Lc6v6o4uIM/oi0EuAIdba8cD/Aq+caENjzDxjTLExpriqKrh6hRTmJNPS1s6GvXVOlyIiIeqUA91aW2etPex9/zoQYYxJO8G2j1hri6y1RW63+1R37VcKhyQDujEqIs455UA3xmQaY4z3/STvnxlysz5kJESTlRTDarWji4hDwrvawBjzDDADSDPGlAP/AUQAWGsfBr4J3G6MaQUagSttiA4QXjgkmZWlun8sIs7oMtCttVd18fkDwAN9VlEAK8xJ4u9r97L3UCODkmKcLkdEQoyeFO1Dp3/Zjq7+6CLiAAV6Hxo1MIHoiDBW6caoiDhAgd6HIlxhnJaVpAeMRMQRCvQ+VjgkmY17azXhhYj0OwV6H5ucl4KnzfLp9pDruSkiDlOg97Fpw1IZEBXO6+v2OV2KiIQYBXofiwp3cd7oDN7eWImnrd3pckQkhCjQfeDicQOpbfSo2UVE+pUC3Qem56cRF+nijfVqdhGR/qNA94HoCBfnjsrgrQ2VtKrZRUT6iQLdRy4el0nNkRaWa2wXEeknCnQfOXtEOjERLvV2EZF+o0D3kZhIFzML0nlrQwVt7SE5+KSI9DMFug9dNC6TA4dbKN6pZhcR8T0Fug+dPcJNhMvw/ub9TpciIiFAge5DA6IjmDw0lfcU6CLSDxToPjazIJ1t+w+zq/qI06WISJBToPvYuaPSAXhvk67SRcS3FOg+NiQ1juHp8WpHFxGfU6D3g3ML0lleWk19k8fpUkQkiCnQ+8G5ozLwtFk+/uKA06WISBBToPeDwpwkEmMieHdTpdOliEgQU6D3g3BXGOeMdPPBlio9NSoiPqNA7yczR2VQc6SFNWUHnS5FRIKUAr2fnD3CjStMT42KiO8o0PtJYkwERUOS1R9dRHxGgd6Pzh2VzuaKevYcanS6FBEJQgr0fjSzIANAzS4i4hMK9H40zB3HkNRY3lf3RRHxAQV6PzLGMLMgnWXbq2lsaXO6HBEJMgr0fnZuQQbNre0s266nRkWkbynQ+9mkoSnERbo0RrqI9DkFej+LDA9jer6b9zftx1o9NSoifUeB7oCZo9KpqGtiw946p0sRkSCiQHfAzIJ0XGGGVz/f53QpIhJEugx0Y8wTxpj9xpj1J/jcGGPuN8ZsM8Z8bowp7Psyg0tafBTnjHSzsKSc1rZ2p8sRkSDRnSv0J4FZJ/n8IiDf+5oHPHTqZQW/uUWD2V/fzEdfVDldiogEiS4D3Vr7EVBzkk3mAAtsh8+AJGPMwL4qMFjNLEgnNS6S51eWO12KiASJvmhDzwLKOi2Xe9d9jTFmnjGm2BhTXFUV2lemEa4w/mliFu9trqT6cLPT5YhIEOjXm6LW2kestUXW2iK3292fu/ZLc4sG42mzvLJmr9OliEgQ6ItA3wMM7rSc7V0nXRiZOYDx2Ym8UFymPukicsr6ItAXA9d7e7tMAWqtteqP101ziwazuaKedXtqnS5FRAJcd7otPgN8Cow0xpQbY242xtxmjLnNu8nrwA5gG/AocIfPqg1C/zh+EJHhYSws0ZcaETk14V1tYK29qovPLfCdPqsoxCTGRHBuQTqvfr6Pn8weRbhLz3qJSO8oPfzAnAmDOHC4mWXbq50uRUQCmALdD8wYmc6A6HAWqbeLiJwCBbofiI5wcdHYTN7aUEGTRxNfiEjvKND9xJwJWRxubtV8oyLSawp0PzElL5X0AVEsWqPeLiLSOwp0P+EKM/zj+EEs2VxFbYPH6XJEJAAp0P3InAmDaGlr58USDdglIj2nQPcj47ISOWt4Gr96YxNLv9Ak0iLSMwp0P2KM4cFrCxnmjufbTxWzXsMBiEgPKND9TEJ0BPNvmkRSbCQ3/mUlZTUNTpfUb2obPDz5SSk/fnmdfpmJ9IJxapS/oqIiW1xc7Mi+A8G2/fVc/tCnZCfHsPCOaUSFu5wuySeaPG18uqOav6/Zy2vr9tHc2k5keBgtre2cNyqdG6blcriplZ3VDdQ2evh/M4cTF9XliBUiQcsYs8paW3S8z/Qvw08NTx/Ab795GvOeWsV/v72VH188yumS+tSK0hr+/OF2Ptl+gCZPO/FR4cwtyubKM3LISY1l/ic7efTjHby76av98j1t7fz0H0Y7VLWIf1Og+7ELxmRy7ZQcHvloB9Pz05ieHxyTgjy/sowfv7yO1PhIrigazDkF6UzJSyU64v++hfy/c/O54cxcVpbWkJEQzZDUWH75xmb+8kkplxVmMWZQooNHIOKf1OTi5xpb2rjkgaUcavTw5l3TSY2PcrqkXmtvt/zmrS08/OF2puen8adrCkmIjuj2z9c2eJj53x+QkxrLS7dNIyzMHP1zv3wvEuxO1uSim6J+LibSxf1XTaS20cNN84uprGtyuqTjKqtpYNm2A7y5voLni8t47fN9rN9TS12Th62V9fzve18w+3+X8vCH27l6cg5P3HhGj8IcIDE2gntmj2L17kM8u7KM0gNH+NcX1jLyp2/wzsZKHx2ZSODQFXqAeGtDBd9/bg3xUeE8fN3pFOYkO10SG/fWsXjtXt7dVMm2/Ye73H5iThJXnZHD3KJsjOndFbW1lqse/YzVuw/haWsnwhVGVHgYYwYl8sy8Kb36M0UCycmu0BXoAWRzRR3zFqyioraJ3849jTkTshyr5YMt+7llfsf5m5yXwnmjMijITCAhJpyE6AgON7eyq/oIO6sbGBAdznmjMshIiO6TfW/bf5jvPF3CjAI3t5yVx/PFZfz2rS188MMZ5KbF9ck+RPyVAj2IHGpoYd6CVXy+5xBv3vUNRwJs5c4arnt8OXlp8fz1lsmkxEX2ew2dVdY1Me1X73Pr9Dzuvqjg6Pr6Jg/xUeG9/jYg4o/Uhh5EkmIjuf+qiUS4wvi3lz6nvb1/fyFv2FvLTU+uZFBiDAtunuR4mANkJERzzsh0XlxVjqetHYAtFfVM/eX73LqgmJbWdocrFOkfCvQAlJkYzU9nj2ZFaQ1PL9/Vb/tdV17L9Y+vID4qnKdumUyaH/W4uWrSYA4cbua9Tfupa/Jw219XYYB3N+3n+8+tobVNoS7BT4EeoOYWZTM9P41fvrG5X4YH+GhrFVc+8inRES6evmUyWUkxPt9nT5w9wk1mQjTPrNjNvzy3lrKaBp741hncc/EoXlu3z5FvMyL9TYEeoIwx/Ory0zDADX9ZwTMrdnO4udUn+3p5dTk3PbmSnNQ4Ft4xjTx3vE/2cyrCXWHMLcrmw61VvLupkp/MHsUZuSnc+o08vn/eCBaW7OHWBcXsqj7idKkiPqNAD2BZSTE8cE0hEWFh/GjhOib/17v88o1Nfda8UFbTwLefKub7z63ljNwUnvv2lD7rqeIL/1w0mMjwMC6dMIgbpuUeXX/nucP5yexRfLqjmvN//xG/fnOzz375iThJvVyCgLWWkt2HWPDpThat2csFozO4/6qJX3mUvicaW9p48INt/PmjHbiM4bszh3PL9KEBMUBYZV0T7vio4z45WlnXxK/f3MzCkj0MTIzmvjljOX90hgNVivSeui2GkL98Usq9f9/IlLwUHr2+iAE9fBpzyZb9/GzRespqGrl0wiDuvmgUmYn+e1XeGyW7D/LjhevYXFHPrDGZ3DtnjF9/8xDpTIEeYhat2cMPnl9LwcABPH3zFBJjuw71qvpmfr54A6+t28cwdxz/9U/jmJKX2g/VOsPT1s4jH+3gf977And8FC/fMY10hboEAPVDDzFzJmTx6PVFbK04zA1/WdFle/Hr6/ZxwR8+5J1NlfzwghG8ftf0oA5zgAhXGN85ZzgvfHsqNUdauGn+So6oXV0CnAI9SJ1TkM4DV09k3Z6OB4EaW9q+tk1to4c7n1nNHU+XkJMSy+t3nsV3Z+YHRFt5Xxk/OIkHrylk07567ni65OiDSdBxb0IkkKjJJcgtWrOH7z23hql5qfz68tMYnBILdMyIdOuCVZTVNHDXufncPmMY4a7Q/f3+zIrd/GjhOvLS4vC0t3OgvoUB0eFcNSmHqyfnqI1d/Iba0EPci6vKuefldVgLN56Zy5hBCdzz8nqiI1w8dG0hZ+SmOF2iX5i/bCfvbqokNS6StPgotlUd5oMtVYSHGS6dmMV9c8YQG6k5YcRZCnRh76FGfv/OVl4qKcdaOC07kT9fdzoDE/3riU9/s/PAERZ8uosnl5UyLjuJx28o8qshDyT0KNDlqI1761i2/QDXThnS637qoejtDRXc+exqMhKimf+tSRqmVxyjXi5y1OhBCdwyPU9h3kMXjMnkb7dOoa7Rw2UPLWP9nlqnSxL5GgW6SDcV5iTz0u3TiIlwcdUjn1G8s8bpkkS+QoEu0gN57niev20qaQOiuO7xFSxeu5eXvDedb3pyJftqG50uUUJYtwLdGDPLGLPFGLPNGHP3cT6/0RhTZYxZ433d0veliviHrKQYnv/2VIakxnLnM6v5wQtrWbxmL59sO8AdT5doQg1xTJd9sIwxLuBPwPlAObDSGLPYWrvxmE2fs9Z+1wc1ivgd94Aonr9tKku/OMAwdzzD0+N5a0MFdzxdwn++tpH75ox1ukQJQd25Qp8EbLPW7rDWtgDPAnN8W5aI/0uIjuDicQMZmTkAV5jh4nEDuXX6UBZ8uouFJeVOlychqDtPSWQBZZ2Wy4HJx9nucmPMN4CtwPettWXHbmCMmQfMA8jJyel5tSJ+7t9nFfB5eS13L1zH35bvJjkuEveAKK4oGsz4wUlOlydBrq9uiv4dyLXWnga8A8w/3kbW2kestUXW2iK3291HuxbxH+GuMB64upA54wcRGR5GWU0Di9fsZc6fPuGuZ1dTftD30wVK6OrOFfoeYHCn5WzvuqOstdWdFh8DfnPqpYkEJveAKH47d/zR5fomDw9/uJ3HPi7ljfUV3DlzOLedHdpj54hvdOdv1Eog3xgz1BgTCVwJLO68gTFmYKfFS4BNfVeiSGAbEB3Bv15YwJIfzuD8URn87u2tXPbQMr6orHe6NAkyXV6hW2tbjTHfBd4CXMAT1toNxpj7gGJr7WLgTmPMJUArUAPc6MOaRQLSoKQY/nRNIRd/vo+fLlrP7PuXMnVYKsPT4xnmjmfqsFSGHjOkQFu7xcBxp9QTOZbGchFxwIHDzfz+na2sLTvE9qrDNHk6+q6flp3IJeMH0W4tn2yrZuXOGqIjXJw/KoMLx2Zw5vC0E45Xb61lc0U9hxo8TB0W3BOUhDINziXix9rbLWUHG3hnYyWL1uxlnXecmGHuOKYNS6O20cOSzfupb25lYGI0d19UwCXjB2GMwVrL2vJaXl27l7c3VrK7puOm6+//eTyXFWY7eVjiIwp0kQBSVtNAZHjYVybVaG5tY+kXB/jDu1tZv6eOM3KTmTosjVfX7mXHgSNEuAxnDk/jwjGZ/H3tXlburGH+tyYxbXgaAAePtLC67CAzRqSr+SbAKdBFgkRbu+WF4jJ++9YWqo+0MHloCpcVZnHRuIEkRHdMBl7b6GHuw8vYV9vEY9cX8cHWKhYs28mRljZumDqEn18yBmMU6oFKgS4SZBpaWjnS3IZ7wPEn2yg/2MA/PbiMqvpmjIHZ4waSEBPB35bv5pazhnLP7FEK9QB1skDXfFoiASg2Mvyk0+FlJ8ey4KZJPF9cxtWTcsjPGIC1lkhXGI8tLcXT1k56QjSrdx+i/GAD/3L+CC4Yk9mPRyC+oCt0kRBireWeV9bzt+W7Achzd3ST3FXdwG8uP43LT9eNVH+nK3QRAcAYw3/OGcu1k4cwMDGa5LhIjjS3Mu+pYn7wwlrqmzzceOZQp8uUXtIVuojQ5GnjzmdW8/bGStLio8hLi2NYejzf/kae5k/1M5pTVEROKjrCxYPXFPKLOWOYWeCm3VoWrdnD9U+soOZIi9PlSTepyUVEgI6RIq+bmnt0uWT3Qa585DNu/+sqnrp5MpHhuv7zdzpDInJchTnJ/Oby01heWsN/LF6PU82z0n26QheRE7p0YhZbK+t58IPteNosd52bz+CUWKfLkhNQoIvISf3wgpF42tqZv2wXr6zewzdPz+au8/IZmBjjdGlyDDW5iMhJhYUZ7pk9mg//bQbXTM5h4eo9zPrjx7yzsdLp0uQYCnQR6ZaBiTHcO2csb3/vGwxOieHWBcXc9/eNtLS2O12aeCnQRaRHctPieOn2adw4LZcnPill7sPLNFeqn1Cgi0iPRYW7+PklY3j42kJ2VB1h9v1LWbJ5v9NlhTzdFBWRXps1diAFmQnc/nQJ33pyJeePzmBISiyZidEU5aYwYXCS0yWGFAW6iJyS3LQ4Xr5jGr98fRMfbq3i4y+qjk6pd/NZQ/nXC0cSHXH8afOkbynQReSURUe4uHfOWKBjRMeDDR7+8M5WHl9aykdbq/jDFRMYm5XocJXBT23oItKnjDGkxEXyi0vHMv+mSdQ1ebjswWU8u2K306UFPQW6iPjM2SPcvHnXN5icl8LdC9fxo4XraG5tc7qsoKVAFxGfSo6L5MlvTeL2GcN4ZsVu5jzwCU99tkujOPqAAl1EfM4VZvj3WQU8fG0hbe2Wn76ynkn/9S63PbWK/XVNTpcXNDTBhYj0K2stm/bVs2jNHhZ8uou4KBd/uGIC0/PdTpcWEDTBhYj4DWMMowcl8KOLR7H4u2eSHBvJ9U+s4DdvbtbV+inSFbqIOKqhpZWfLdrAi6vKMQZOz0nm4nEDuXpyjvqvH8fJrtAV6CLiF7ZW1vPGugreWL+PzRX1DE6J4d5LxjCzIMPp0vyKAl1EAsqn26v56aL1bNt/mPNGpXP+6AxGZiaQnx5PXFRoPw+pQBeRgNPS2s7jS0t5cMk26ptbATAGioYkc+GYTC4ck0l2cgzGGIcr7V8KdBEJWO3tlrKDDWyuqGf9nlre2VjJ5op6AKIjwkiLj8I9IIrp+W6uOGMwWUnBPZOSAl1Egsru6gaWbNnPnkONVNU3U36wgeJdB4GOp1Pz0+Npbm2n2dNOTmosZ49wM3pgAmFhgX81r0AXkaBXfrCB51eW8eKqcg41eogMDyPCFUZVfTMAafFRjMtKIC0+itT4KPLccZw5PC3grugV6CISsvbXN/Hx1gN8uLWKHQcOc6C+heojzXjaOrIvNzWWiTnJZCZGk5kQTUZCNOkJUbjjo0iNjyQmwuVX7fQnC/Ru3S42xswC/gdwAY9Za391zOdRwALgdKAauMJau/NUihYR6QvpA6K5/PRsLj89++g6ay1bKw/zybYDfLLtACtKa6isa6K1/fgXuDERLmIjXSTGRJAQE0FybIQ3+KNxx0fSbjtu4rZby/D0eE7LTsI9IKq/DvGoLgPdGOMC/gScD5QDK40xi621GzttdjNw0Fo73BhzJfBr4ApfFCwicqqMMYzMHMDIzAHcdNZQoOPma/WRFirrmqiqb2Z/fRPVR1po8rTT2NLKkZY2ahs91DV6qDrczPq9dRw43MyJGjkyE6KJjXTRZi1t7ZaW1vaOdv3WNm45K48fXjiyz4+rO1fok4Bt1todAMaYZ4E5QOdAnwP83Pv+ReABY4yxTrXniIj0UFiYwT0gqkdX1p62dg4eacEVZogMD8MCm/fV83n5ITbsrcPT1o4rzOAyHZ9HhYcRFeHi9NxknxxDdwI9CyjrtFwOTD7RNtbaVmNMLZAKHOi8kTFmHjAPICcnp5cli4j4hwhXGOkJ0V9ZN2loCpOGpjhST78OzmWtfcRaW2StLXK7NbKaiEhf6k6g7wEGd1rO9q477jbGmHAgkY6boyIi0k+6E+grgXxjzFBjTCRwJbD4mG0WAzd4338TeF/t5yIi/avLNnRvm/h3gbfo6Lb4hLV2gzHmPqDYWrsYeBx4yhizDaihI/RFRKQfdasfurX2deD1Y9b9rNP7JmBu35YmIiI9oRmLRESChAJdRCRIKNBFRIKEY4NzGWOqgF29/PE0jnloKUSE4nGH4jFDaB53KB4z9Py4h1hrj/sgj2OBfiqMMcUnGm0smIXicYfiMUNoHncoHjP07XGryUVEJEgo0EVEgkSgBvojThfgkFA87lA8ZgjN4w7FY4Y+PO6AbEMXEZGvC9QrdBEROYYCXUQkSARcoBtjZhljthhjthlj7na6Hl8wxgw2xiwxxmw0xmwwxtzlXZ9ijHnHGPOF9/amWS4AAANNSURBVL++mfbEYcYYlzFmtTHmVe/yUGPMcu85f8476mfQMMYkGWNeNMZsNsZsMsZMDYVzbYz5vvfv93pjzDPGmOhgPNfGmCeMMfuNMes7rTvu+TUd7vce/+fGmMKe7CugAr3T/KYXAaOBq4wxo52tyidagR9Ya0cDU4DveI/zbuA9a20+8J53ORjdBWzqtPxr4A/W2uHAQTrmsA0m/wO8aa0tAMbTcexBfa6NMVnAnUCRtXYsHSO5fjkfcbCd6yeBWcesO9H5vQjI977mAQ/1ZEcBFeh0mt/UWtsCfDm/aVCx1u6z1pZ439fT8Q88i45jne/dbD5wqTMV+o4xJhuYDTzmXTbATDrmqoUgO25jTCLwDTqGoMZa22KtPUQInGs6RnuN8U6KEwvsIwjPtbX2IzqGFe/sROd3DrDAdvgMSDLGDOzuvgIt0I83v2mWQ7X0C2NMLjARWA5kWGv3eT+qADIcKsuX/gj8G9DuXU4FDllrW73LwXbOhwJVwF+8zUyPGWPiCPJzba3dA/wO2E1HkNcCqwjuc93Zic7vKWVcoAV6SDHGxAMvAd+z1tZ1/sw7I1RQ9Tk1xvwDsN9au8rpWvpROFAIPGStnQgc4ZjmlSA918l0XI0OBQYBcXy9WSIk9OX5DbRA7878pkHBGBNBR5g/ba1d6F1d+eXXL+9/9ztVn4+cCVxijNlJR3PaTDral5O8X8sh+M55OVBurV3uXX6RjoAP9nN9HlBqra2y1nqAhXSc/2A+152d6PyeUsYFWqB3Z37TgOdtN34c2GSt/X2njzrP3XoDsKi/a/Mla+2PrLXZ1tpcOs7t+9baa4AldMxVC0F23NbaCqDMGDPSu+pcYCNBfq7paGqZYoyJ9f59//K4g/ZcH+NE53cxcL23t8sUoLZT00zXrLUB9QIuBrYC24F7nK7HR8d4Fh1fwT4H1nhfF9PRnvwe8AXwLpDidK0+/H8wA3jV+z4PWAFsA14Aopyur4+PdQJQ7D3frwDJoXCugXuBzcB64CkgKhjPNfAMHfcJPHR8I7v5ROcXMHT05NsOrKOjF1C396VH/0VEgkSgNbmIiMgJKNBFRIKEAl1EJEgo0EVEgoQCXUQkSCjQRUSChAJdRCRI/H+/Iiw8oqIcewAAAABJRU5ErkJggg==\n",
310-
"text/plain": [
311-
"<Figure size 432x288 with 1 Axes>"
312-
]
313-
},
314-
"metadata": {
315-
"needs_background": "light"
316-
},
317-
"output_type": "display_data"
318-
}
319-
],
272+
"outputs": [],
320273
"source": [
321274
"qc = TorchCircuit.apply\n",
322275
"\n",
@@ -358,7 +311,7 @@
358311
},
359312
{
360313
"cell_type": "code",
361-
"execution_count": 11,
314+
"execution_count": null,
362315
"metadata": {},
363316
"outputs": [],
364317
"source": [
@@ -380,117 +333,9 @@
380333
},
381334
{
382335
"cell_type": "code",
383-
"execution_count": 12,
336+
"execution_count": null,
384337
"metadata": {},
385-
"outputs": [
386-
{
387-
"name": "stderr",
388-
"output_type": "stream",
389-
"text": [
390-
"\r",
391-
"0it [00:00, ?it/s]"
392-
]
393-
},
394-
{
395-
"name": "stdout",
396-
"output_type": "stream",
397-
"text": [
398-
"Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ./data/MNIST/raw/train-images-idx3-ubyte.gz\n"
399-
]
400-
},
401-
{
402-
"name": "stderr",
403-
"output_type": "stream",
404-
"text": [
405-
"9920512it [00:09, 1033422.94it/s] \n"
406-
]
407-
},
408-
{
409-
"name": "stdout",
410-
"output_type": "stream",
411-
"text": [
412-
"Extracting ./data/MNIST/raw/train-images-idx3-ubyte.gz to ./data/MNIST/raw\n"
413-
]
414-
},
415-
{
416-
"name": "stderr",
417-
"output_type": "stream",
418-
"text": [
419-
"\r",
420-
"0it [00:00, ?it/s]"
421-
]
422-
},
423-
{
424-
"name": "stdout",
425-
"output_type": "stream",
426-
"text": [
427-
"Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ./data/MNIST/raw/train-labels-idx1-ubyte.gz\n"
428-
]
429-
},
430-
{
431-
"name": "stderr",
432-
"output_type": "stream",
433-
"text": [
434-
"32768it [00:00, 91809.04it/s] \n",
435-
"0it [00:00, ?it/s]"
436-
]
437-
},
438-
{
439-
"name": "stdout",
440-
"output_type": "stream",
441-
"text": [
442-
"Extracting ./data/MNIST/raw/train-labels-idx1-ubyte.gz to ./data/MNIST/raw\n",
443-
"Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw/t10k-images-idx3-ubyte.gz\n"
444-
]
445-
},
446-
{
447-
"name": "stderr",
448-
"output_type": "stream",
449-
"text": [
450-
"1654784it [00:02, 567437.39it/s] \n",
451-
"0it [00:00, ?it/s]"
452-
]
453-
},
454-
{
455-
"name": "stdout",
456-
"output_type": "stream",
457-
"text": [
458-
"Extracting ./data/MNIST/raw/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw\n",
459-
"Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz\n"
460-
]
461-
},
462-
{
463-
"name": "stderr",
464-
"output_type": "stream",
465-
"text": [
466-
"8192it [00:00, 29906.12it/s] "
467-
]
468-
},
469-
{
470-
"name": "stdout",
471-
"output_type": "stream",
472-
"text": [
473-
"Extracting ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw\n",
474-
"Processing...\n",
475-
"Done!\n",
476-
"Dataset MNIST\n",
477-
" Number of datapoints: 40\n",
478-
" Root location: ./data\n",
479-
" Split: Train\n",
480-
" StandardTransform\n",
481-
"Transform: Compose(\n",
482-
" ToTensor()\n",
483-
" )\n"
484-
]
485-
},
486-
{
487-
"name": "stderr",
488-
"output_type": "stream",
489-
"text": [
490-
"\n"
491-
]
492-
}
493-
],
338+
"outputs": [],
494339
"source": [
495340
"import numpy as np\n",
496341
"import torchvision\n",
@@ -533,7 +378,7 @@
533378
},
534379
{
535380
"cell_type": "code",
536-
"execution_count": 13,
381+
"execution_count": null,
537382
"metadata": {},
538383
"outputs": [],
539384
"source": [
@@ -563,7 +408,7 @@
563408
},
564409
{
565410
"cell_type": "code",
566-
"execution_count": 14,
411+
"execution_count": null,
567412
"metadata": {},
568413
"outputs": [],
569414
"source": [
@@ -589,26 +434,9 @@
589434
},
590435
{
591436
"cell_type": "code",
592-
"execution_count": 47,
437+
"execution_count": null,
593438
"metadata": {},
594-
"outputs": [
595-
{
596-
"name": "stdout",
597-
"output_type": "stream",
598-
"text": [
599-
"-0.7789\n",
600-
"-0.8216\n",
601-
"-0.8955\n",
602-
"-0.99\n",
603-
"-0.8736\n",
604-
"-0.921\n",
605-
"-0.9768\n",
606-
"-0.926\n",
607-
"-0.8887\n",
608-
"-0.8338\n"
609-
]
610-
}
611-
],
439+
"outputs": [],
612440
"source": [
613441
"epochs = 10\n",
614442
"for epoch in range(epochs):\n",
@@ -638,17 +466,9 @@
638466
},
639467
{
640468
"cell_type": "code",
641-
"execution_count": 51,
469+
"execution_count": null,
642470
"metadata": {},
643-
"outputs": [
644-
{
645-
"name": "stdout",
646-
"output_type": "stream",
647-
"text": [
648-
"Accuracy is: 1.0\n"
649-
]
650-
}
651-
],
471+
"outputs": [],
652472
"source": [
653473
"accuracy = 0\n",
654474
"number = 0\n",

0 commit comments

Comments
 (0)