-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBackgroundDataset.py
58 lines (49 loc) · 1.98 KB
/
BackgroundDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import fnmatch
import os
import pickle
import numpy as np
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import torch
import random
class BackgroundDataset(Dataset):
def __init__(self, img_dir, imgsize, shuffle=True, max_num=99999):
n_jpeg_images = len(fnmatch.filter(os.listdir(img_dir), '*.jpeg'))
n_jpg_images = len(fnmatch.filter(os.listdir(img_dir), '*.jpg'))
n_images = n_jpeg_images + n_jpg_images
self.len = min(n_images, max_num)
self.img_dir = img_dir
self.imgsize = imgsize
self.img_names = fnmatch.filter(os.listdir(img_dir), '*.jpeg') + fnmatch.filter(os.listdir(img_dir), '*.jpg')
self.img_names = self.img_names[:self.len]
random.shuffle(self.img_names)
self.shuffle = shuffle
self.img_paths = []
for i, img_name in enumerate(self.img_names):
self.img_paths.append(os.path.join(self.img_dir, img_name))
def __len__(self):
return self.len
def __getitem__(self, idx):
assert idx <= len(self), 'index range error'
img_path = os.path.join(self.img_dir, self.img_names[idx])
image = Image.open(img_path).convert('RGB')
image = self.scale(image)
transform = transforms.ToTensor()
image = transform(image)
return image
def scale(self, img):
w, h = img.size
if w == h:
scaled_img = img
else:
dim_to_scale = 1 if w < h else 2
if dim_to_scale == 1:
cropping = (h - w) / 2
scaled_img = img.crop((0, int(cropping), w, int(cropping) + w))
else:
cropping = (w - h) / 2
scaled_img = img.crop((int(cropping), 0, int(cropping) + h, h))
resize = transforms.Resize((self.imgsize, self.imgsize))
scaled_img = resize(scaled_img) # choose here
return scaled_img