-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrender_chart.py
executable file
·226 lines (196 loc) · 7.93 KB
/
render_chart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Run this app with `python app.py` and
# visit http://127.0.0.1:8050/ in your web browser.
import argparse
import http
import sqlite3
import sys
import urllib
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
@app.callback(
[dash.dependencies.Output('short-data-graph', 'figure'),
dash.dependencies.Output('short-data-graph-raw', 'figure'),
dash.dependencies.Output('short-data-table', 'figure'),
dash.dependencies.Output('short-data-graph-percent_total', 'figure')],
[dash.dependencies.Input('crossfilter-symbol', 'value')])
def update_graph(new_symbol):
# fig = make_subplots(specs=[[{"secondary_y": True}]])
fig = go.Figure()
if not new_symbol or 'Pick Symbol to track' == new_symbol:
tbl = go.Figure(go.Table(header=dict(values=[]), cells=dict(values=[])))
return fig, fig, tbl, fig
conn = sqlite3.connect(args.db)
df = pd.read_sql_query(
f"SELECT date, short_vol, source || '-' || market AS ID FROM stocks WHERE symbol = '{new_symbol}'",
conn)
max_date = df['date'].max()
min_date = df['date'].min()
if args.apitoken:
try:
URL = f'https://api.tiingo.com/tiingo/daily/{new_symbol}/prices?startDate={min_date}&endDate={max_date}&token={API_TOKEN}'
# Retrieve this symbols data from tiingo
df_symbol_open_close = pd.read_json(URL)
# df_symbol_open_close = pd.read_pickle('/tmp/saved.pkl')
# Add column for diff between open and close
df_symbol_open_close['diff'] = df_symbol_open_close['close'] - df_symbol_open_close['open']
fig.add_trace(go.Candlestick(
name=f'{new_symbol} Price',
x=df_symbol_open_close['date'],
open=df_symbol_open_close['open'],
high=df_symbol_open_close['high'],
low=df_symbol_open_close['low'],
close=df_symbol_open_close['close'],
yaxis='y2')
)
fig.add_trace(
go.Bar(name=f'{new_symbol} diff O/C', x=df_symbol_open_close['date'], y=df_symbol_open_close['diff'],
opacity=0.4, yaxis='y3', visible='legendonly'))
except (urllib.error.HTTPError, http.client.InvalidURL):
pass
# Edit the layout
fig.update_layout(title='Short Volume', yaxis2=dict(anchor='x'))
# Set x-axis title
fig.update_xaxes(title_text="Date")
fig.update_layout(
height=1000,
xaxis=dict(
domain=[0.1, 0.9]
),
yaxis=dict(
title="Normalized Short Volume ",
titlefont=dict(color="#1f77b4"), tickfont=dict(color="#1f77b4")
),
yaxis2=dict(
title="Price",
titlefont=dict(color="#ff7f0e"), tickfont=dict(color="#ff7f0e"),
anchor="free",
overlaying="y",
side="left",
# position=0.05
),
yaxis3=dict(
title="O/C diff",
titlefont=dict(color="#d62728"), tickfont=dict(color="#d62728"),
anchor="x",
overlaying="y",
side="right"
),
yaxis4=dict(
title="yaxis4 title",
titlefont=dict(color="#9467bd"), tickfont=dict(color="#9467bd"),
anchor="free",
overlaying="y",
side="right",
position=0.85
)
)
for i in reversed(df['ID'].unique()):
series = df.loc[df['ID'] == i]
normalized_df = (series - series.mean()) / series.std()
x_axis = series['date']
y_axis = normalized_df['short_vol']
fig.add_trace(go.Scatter(x=x_axis, y=y_axis, mode='lines+markers', name=i)) # , line_shape='spline'))
fig.update_xaxes(
rangeslider_visible=True,
rangeselector=dict(
buttons=list([
dict(count=1, label="1m", step="month", stepmode="backward"),
dict(count=6, label="6m", step="month", stepmode="backward"),
dict(count=1, label="YTD", step="year", stepmode="todate"),
dict(count=1, label="1y", step="year", stepmode="backward"),
dict(step="all")
])
)
)
print(new_symbol)
df = pd.read_sql_query(
f"SELECT date, short_vol, short_exempt_vol, total_vol, (total_vol - (short_vol+short_exempt_vol)) as diff_vol, ((short_vol+short_exempt_vol)* 1.0/total_vol)*100 as scale_vol,source || '-' || market AS ID FROM stocks WHERE symbol = '{new_symbol}' ORDER BY date",
conn)
tbl = go.Figure(data=[go.Table(
header=dict(values=list(df.columns),
fill_color='paleturquoise',
align='left'),
cells=dict(values=[df.date, df.short_vol, df.short_exempt_vol, df.total_vol, df.diff_vol, df.scale_vol, df.ID],
fill_color='lavender',
align='left'))
])
fig_volumes = go.Figure()
fig_volumes.update_layout(title='Short Volume')
for i in reversed(df['ID'].unique()):
series = df.loc[df['ID'] == i]
fig_volumes.add_trace(go.Bar(x=series.date, y=series.short_vol, name=i))
sql_query = f"""
SELECT date,
short_vol,
short_exempt_vol,
total_vol,
(short_vol*1.0)/total_vol AS scale_vol
FROM (SELECT date,
Sum(short_vol) AS short_vol,
Sum(short_exempt_vol) AS short_exempt_vol,
Sum(total_vol) AS total_vol
FROM stocks
WHERE symbol = '{new_symbol}'
GROUP BY date,
symbol
ORDER BY date);
"""
df = pd.read_sql_query(sql_query, conn)
fig_percent = go.Figure()
fig_percent.update_layout(title='Short Volume as Percentage of Total')
fig_percent.add_trace(go.Scatter(x=df.date, y=df.scale_vol, name=f'{i}(shorts as percent of total volume)'))
conn.close()
return fig, fig_volumes, tbl, fig_percent
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Put together some charts!!!')
parser.add_argument('-a', '--apitoken', help='tiingo api key')
parser.add_argument('-d', '--db', required=True,
help='path to sqlite db file created with \'populate_short_data.py\'')
args = parser.parse_args()
API_TOKEN = args.apitoken
try:
conn = sqlite3.connect(args.db)
c = conn.cursor()
df_symbols = pd.read_sql_query('SELECT DISTINCT(symbol) FROM stocks ORDER BY symbol', conn)
except (sqlite3.OperationalError, pd.io.sql.DatabaseError):
print('You probably didn\'t generate the DB properly. Make sure to run populate_short_data.py')
sys.exit(1)
available_tickers = df_symbols['symbol'].unique()
fig = make_subplots(specs=[[{"secondary_y": True}]])
tbl = go.Figure(go.Table(header=dict(values=[]), cells=dict(values=[])))
app.layout = html.Div(children=[
html.H1(children=f'Short Data'),
html.Div([
dcc.Dropdown(
id='crossfilter-symbol',
options=[{'label': i, 'value': i} for i in available_tickers],
value='Pick Symbol to track'
)
],
style={'width': '49%', 'display': 'inline-block'}),
dcc.Graph(
id='short-data-graph',
figure=fig
),
dcc.Graph(
id='short-data-graph-raw',
figure=fig
),
dcc.Graph(
id='short-data-graph-percent_total',
figure=fig
),
dcc.Graph(
id='short-data-table',
figure=tbl
)
])
app.run_server(debug=True)