-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathmlvectorScript.sml
393 lines (322 loc) · 9.64 KB
/
mlvectorScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
(*
Pure functions for the Vector module.
*)
open preamble
mllistTheory miscTheory regexp_compilerTheory
val _ = new_theory"mlvector"
val _ = set_grammar_ancestry ["mllist", "regexp_compiler"]
Theorem vector_nchotomy =
regexp_compilerTheory.vector_nchotomy
Theorem sub_def =
regexp_compilerTheory.sub_def
Theorem length_def =
regexp_compilerTheory.length_def
Definition tabulate_def:
tabulate n f = Vector (GENLIST f n)
End
Definition toList_aux_def:
toList_aux vec n =
if length(vec) <= n
then []
else sub vec n::toList_aux vec (n + 1)
Termination
wf_rel_tac `measure (\(vec, n). length(vec) - n)`
End
val toList_aux_ind = theorem"toList_aux_ind";
Definition toList_def:
toList vec = toList_aux vec 0
End
Triviality toList_aux_thm:
!vec n. toList_aux vec n = case vec of Vector vs => DROP n vs
Proof
ho_match_mp_tac toList_aux_ind \\
rw [] \\
ONCE_REWRITE_TAC [toList_aux_def] \\
IF_CASES_TAC THEN1
(Cases_on `vec` \\ fs [length_def]) \\
fs [] \\
Cases_on `vec` \\
fs [sub_def, length_def, DROP_EL_CONS]
QED
Theorem toList_thm:
!ls. toList (Vector ls) = ls
Proof
rw [toList_def, toList_aux_thm]
QED
Theorem length_toList:
LENGTH (toList vec) = length vec
Proof
Induct_on `vec` >> rw[length_def, toList_thm]
QED
Theorem toList_11[simp]:
(toList l = toList l') = (l = l')
Proof
Induct_on `l` >> Induct_on `l'` >> fs[toList_thm]
QED
Theorem EL_toList:
EL n (toList l) = sub l n
Proof
Induct_on `l` >> fs[sub_def,toList_thm]
QED
Theorem toList_fromList[simp]:
(toList(fromList l) = l) /\ (fromList(toList v) = v)
Proof
Cases_on `v` >> fs[toList_thm,fromList_def]
QED
Definition update_def:
update vec i x = Vector (LUPDATE x i (toList(vec)))
End
Theorem update_thm:
!vec i x. sub (update vec i x) i = if i < length vec then x
else sub vec i
Proof
Cases \\
rw [update_def, toList_thm, EL_LUPDATE, length_def, sub_def]
QED
Definition concat_def:
concat l = Vector (FLAT (MAP toList l))
End
Definition map_def:
map vec f = Vector (MAP f (toList vec))
End
Definition mapi_def:
mapi vec f = Vector (MAPi f (toList vec))
End
Triviality less_than_length_thm:
!xs n. (n < LENGTH xs) ==> (?ys z zs. (xs = ys ++ z::zs) /\ (LENGTH ys = n))
Proof
rw[] \\
qexists_tac`TAKE n xs` \\
rw[] \\
qexists_tac`HD (DROP n xs)` \\
qexists_tac`TL (DROP n xs)` \\
Cases_on`DROP n xs` \\ fs[] \\
metis_tac[TAKE_DROP,APPEND_ASSOC,CONS_APPEND]
QED
Definition foldli_aux_def:
(foldli_aux f e vec n 0 = e) /\
(foldli_aux f e vec n (SUC len) = foldli_aux f (f n (sub vec n) e) vec (n + 1) len)
End
Definition foldli_def:
foldli f e vec = foldli_aux f e vec 0 (length vec)
End
Triviality foldli_aux_thm:
!f e vec n len. (n + len = length vec) ==>
(foldli_aux f e vec n len = mllist$foldli_aux f e n (DROP n (toList vec)))
Proof
Cases_on `vec` \\ Induct_on `len` \\
rw [foldli_aux_def, toList_thm, length_def, sub_def]
>-(rw [DROP_LENGTH_TOO_LONG, mllistTheory.foldli_aux_def])
\\ rw [DROP_EL_CONS, mllistTheory.foldli_aux_def, ADD1]
QED
Theorem foldli_thm:
!f e vec. foldli f e vec = mllist$foldli f e (toList vec)
Proof
rw [foldli_def, mllistTheory.foldli_def, foldli_aux_thm]
QED
Definition foldl_aux_def:
(foldl_aux f e vec n 0 = e) /\
(foldl_aux f e vec n (SUC len) = foldl_aux f (f e (sub vec n)) vec (n + 1) len)
End
Definition foldl_def:
foldl f e vec = foldl_aux f e vec 0 (length vec)
End
Triviality foldl_aux_thm:
!f e vec x len. (x + len = length vec) ==>
(foldl_aux f e vec x len = FOLDL f e (DROP x (toList vec)))
Proof
Induct_on `len` \\ Cases_on `vec` \\
rw [foldl_aux_def, DROP_LENGTH_TOO_LONG, length_def, toList_thm] \\
rw [length_def, sub_def, toList_thm] \\
`x < LENGTH l` by decide_tac \\
drule less_than_length_thm \\
rw [] \\
rw [] \\
`LENGTH ys + 1 = LENGTH (ys ++ [z])` by (fs [] \\ NO_TAC) \\ ASM_REWRITE_TAC [DROP_LENGTH_APPEND]\\
simp_tac std_ss [GSYM APPEND_ASSOC, APPEND, EL_LENGTH_APPEND, NULL, HD,
FOLDL, DROP_LENGTH_APPEND]
QED
Theorem foldl_thm:
!f e vec. foldl f e vec = FOLDL f e (toList vec)
Proof
rw [foldl_aux_thm, foldl_def]
QED
Definition foldri_aux_def:
(foldri_aux f e vec 0 = e) /\
(foldri_aux f e vec (SUC len) = foldri_aux f (f len (sub vec len) e) vec len)
End
Definition foldri_def:
foldri f e vec = foldri_aux f e vec (length vec)
End
Triviality foldri_aux_thm:
!f e vec len. len <= length vec ==>
(foldri_aux f e vec len = FOLDRi f e (TAKE len (toList vec)))
Proof
Induct_on `len` \\ rw[foldri_aux_def] \\
Cases_on `vec` \\ fs[length_def, toList_thm, sub_def] \\
rw [ADD1, TAKE_SUM, TAKE1_DROP, FOLDRi_APPEND]
QED
Theorem foldri_thm:
!f e vec. foldri f e vec = FOLDRi f e (toList vec)
Proof
Cases_on `vec` \\
rw [foldri_aux_thm, foldri_def, toList_thm, length_def]
QED
Definition foldr_aux_def:
(foldr_aux f e vec 0 = e) /\
(foldr_aux f e vec (SUC len) = foldr_aux f (f (sub vec len) e) vec len)
End
Definition foldr_def:
foldr f e vec = foldr_aux f e vec (length vec)
End
Triviality foldr_aux_thm:
!f e vec len. len <= length vec ==>
(foldr_aux f e vec len = FOLDR f e (TAKE len (toList vec)))
Proof
Induct_on `len` \\ rw[foldr_aux_def] \\
Cases_on `vec` \\ fs[length_def, toList_thm, sub_def] \\
rw [ADD1, TAKE_SUM, TAKE1_DROP, FOLDR_APPEND]
QED
Theorem foldr_thm:
!f e vec. foldr f e vec = FOLDR f e (toList vec)
Proof
Cases_on `vec` \\
rw[foldr_def, foldr_aux_thm, length_def, toList_thm]
QED
Definition findi_aux_def:
(findi_aux f vec n 0 = NONE) /\
(findi_aux f vec n (SUC len) =
if f n (sub vec n)
then SOME(n, (sub vec n))
else findi_aux f vec (n + 1) len)
End
Definition findi_def:
findi f vec = findi_aux f vec 0 (length vec)
End
Definition find_aux_def:
(find_aux f vec n 0 = NONE) /\
(find_aux f vec n (SUC len) =
if f (sub vec n)
then SOME(sub vec n)
else find_aux f vec (n + 1) len)
End
Definition find_def:
find f vec = find_aux f vec 0 (length vec)
End
Triviality find_aux_thm:
!f vec n len. (n + len = length vec) ==> (find_aux f vec n len = FIND f (DROP n (toList vec)))
Proof
Induct_on `len` \\ Cases_on `vec` \\ rw [find_aux_def, sub_def, length_def,
toList_thm, FIND_def, INDEX_FIND_def] \\
rw[DROP_LENGTH_NIL, INDEX_FIND_def] THEN1
(qexists_tac`(0, EL n l)` \\ rw [DROP_EL_CONS, INDEX_FIND_def]) \\
rw [DROP_EL_CONS, INDEX_FIND_def, index_find_thm]
QED
Theorem find_thm:
!f vec. find f vec = FIND f (toList vec)
Proof
rw [find_aux_thm, find_def]
QED
Definition exists_aux_def:
(exists_aux f vec n 0 = F) /\
(exists_aux f vec n (SUC len) =
if f (sub vec n)
then T
else exists_aux f vec (n + 1) len)
End
Definition exists_def:
exists f vec = exists_aux f vec 0 (length vec)
End
Theorem exists_aux_thm[local]:
!f vec n len.
n + len = length vec ==>
exists_aux f vec n len = EXISTS f (DROP n (toList vec))
Proof
Induct_on `len` \\ Cases_on `vec` \\
rw[toList_thm, length_def, sub_def, exists_aux_def] \\
rw [DROP_EL_CONS]
QED
Theorem exists_thm:
!f vec. exists f vec = EXISTS f (toList vec)
Proof
Cases_on `vec` \\
rw [exists_def, exists_aux_thm]
QED
Definition all_aux_def:
(all_aux f vec n 0 = T) /\
(all_aux f vec n (SUC len) =
if f (sub vec n)
then all_aux f vec (n + 1) len
else F)
End
Definition all_def: all f vec = all_aux f vec 0 (length vec)
End
Theorem all_aux_thm[local]:
!f vec n len.
n + len = length vec ==>
all_aux f vec n len = EVERY f (DROP n (toList vec))
Proof
Induct_on `len` \\ Cases_on `vec` \\
rw[toList_thm, length_def, sub_def, all_aux_def] \\
rw [DROP_EL_CONS]
QED
Theorem all_thm:
!f vec. all f vec = EVERY f (toList vec)
Proof
Cases_on `vec` \\ rw[all_def, all_aux_thm]
QED
Definition collate_aux_def:
(collate_aux f vec1 vec2 n ord 0 = ord) /\
(collate_aux f vec1 vec2 n ord (SUC len) =
if f (sub vec1 n) (sub vec2 n) = EQUAL
then collate_aux f vec1 vec2 (n + 1) ord len
else f (sub vec1 n) (sub vec2 n))
End
Definition collate_def:
collate f vec1 vec2 =
if (length vec1) < (length vec2)
then collate_aux f vec1 vec2 0 LESS (length vec1)
else if (length vec2) < (length vec1)
then collate_aux f vec1 vec2 0 GREATER (length vec2)
else collate_aux f vec1 vec2 0 EQUAL (length vec2)
End
Theorem collate_aux_less_thm[local]:
!f vec1 vec2 n len.
n + len = length vec1 /\ length vec1 < length vec2 ==>
collate_aux f vec1 vec2 n Less len =
mllist$collate f (DROP n (toList vec1)) (DROP n (toList vec2))
Proof
Cases_on ‘vec1’ \\ Cases_on ‘vec2’ \\ Induct_on ‘len’ \\
rw [collate_aux_def, mllistTheory.collate_def, length_def, toList_thm,
sub_def, DROP_EL_CONS]
QED
Theorem collate_aux_equal_thm[local]:
!f vec1 vec2 n len.
n + len = length vec2 /\ length vec1 = length vec2 ==>
collate_aux f vec1 vec2 n Equal len =
mllist$collate f (DROP n (toList vec1)) (DROP n (toList vec2))
Proof
Cases_on ‘vec1’ \\ Cases_on ‘vec2’ \\ Induct_on ‘len’ \\
rw [collate_aux_def, mllistTheory.collate_def, length_def, toList_thm,
sub_def]
>- rw [DROP_LENGTH_TOO_LONG, mllistTheory.collate_def] \\
fs [DROP_EL_CONS, mllistTheory.collate_def]
QED
Theorem collate_aux_greater_thm[local]:
!f vec1 vec2 n len.
n + len = length vec2 /\ length vec2 < length vec1 ==>
collate_aux f vec1 vec2 n Greater len =
mllist$collate f (DROP n (toList vec1)) (DROP n (toList vec2))
Proof
Cases_on ‘vec1’ \\ Cases_on ‘vec2’ \\ Induct_on ‘len’ \\
rw [collate_aux_def, mllistTheory.collate_def, length_def, toList_thm,
sub_def, DROP_EL_CONS]
QED
Theorem collate_thm:
!f vec1 vec2.
collate f vec1 vec2 = mllist$collate f (toList vec1) (toList vec2)
Proof
rw [collate_def, collate_aux_greater_thm, collate_aux_equal_thm,
collate_aux_less_thm]
QED
val _ = export_theory()