-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathholSemanticsExtraScript.sml
905 lines (848 loc) · 32.8 KB
/
holSemanticsExtraScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
(*
Some lemmas about the semantics.
*)
open preamble holSyntaxLibTheory holSyntaxTheory holSyntaxExtraTheory holSemanticsTheory setSpecTheory
val _ = new_theory"holSemanticsExtra"
val _ = temp_delsimps ["NORMEQ_CONV"]
val _ = temp_delsimps ["lift_disj_eq", "lift_imp_disj"]
val _ = diminish_srw_ss ["ABBREV"]
val _ = set_trace "BasicProvers.var_eq_old" 1
val _ = Parse.hide "mem";
val mem = ``mem:'U->'U->bool``
fun drule0 th =
first_assum(mp_tac o MATCH_MP (ONCE_REWRITE_RULE[GSYM AND_IMP_INTRO] th))
Triviality consts_of_term_RACONV:
!env tt.
RACONV env tt /\ welltyped(FST tt) /\ welltyped(SND tt)
/\ (!x y. MEM (x,y) env ==> ?n ty n' ty'. x = Var n ty /\ y = Var n' ty')
==> consts_of_term (FST tt) = consts_of_term (SND tt)
Proof
simp[GSYM AND_IMP_INTRO]
>> ho_match_mp_tac RACONV_strongind >> rpt strip_tac
>> fs[consts_of_term_def,DISJ_IMP_THM]
>> fs[DISJ_IMP_THM]
QED
Theorem consts_of_term_ACONV:
ACONV a1 a2 /\ welltyped a1 /\ welltyped a2 ==> consts_of_term a1 = consts_of_term a2
Proof
rw[ACONV_def] >> drule consts_of_term_RACONV >> simp[]
QED
Triviality allTypes_RACONV:
!env tt.
RACONV env tt /\ welltyped(FST tt) /\ welltyped(SND tt)
/\ (!x y. MEM (x,y) env ==> ?n ty n'. x = Var n ty /\ y = Var n' ty)
==> allTypes (FST tt) = allTypes (SND tt)
Proof
simp[GSYM AND_IMP_INTRO]
>> ho_match_mp_tac RACONV_strongind >> rpt strip_tac
>> fs[allTypes_def]
>- (imp_res_tac ALPHAVARS_MEM >> fs[] >> first_x_assum drule >> simp[])
>- fs[DISJ_IMP_THM]
QED
Theorem allTypes_ACONV:
!t1 t2.
ACONV t1 t2 /\ welltyped t1 /\ welltyped t2
==> allTypes t1 = allTypes t2
Proof
rw[ACONV_def] >> drule allTypes_RACONV >> simp[]
QED
Theorem terms_of_frag_uninst_ACONV:
!t1 t2 frag sigma. ACONV t1 t2 /\ welltyped t1 /\ welltyped t2 ==>
(t1 ∈ terms_of_frag_uninst frag sigma <=> t2 ∈ terms_of_frag_uninst frag sigma)
Proof
Cases_on `frag` >> rw[terms_of_frag_uninst_def]
>> drule consts_of_term_ACONV >> simp[] >> disch_then kall_tac
>> drule allTypes_ACONV >> simp[] >> disch_then kall_tac
QED
Theorem termsem_ext_equation:
is_set_theory ^mem ⇒
∀sig frag δ γ v s t.
is_sig_fragment sig frag ∧
is_frag_interpretation frag δ γ ∧
valuates_frag frag δ v sigma ∧
s ∈ terms_of_frag_uninst frag sigma ∧ t ∈ terms_of_frag_uninst frag sigma ∧
term_ok sig (s === t)
⇒ termsem_ext δ γ v sigma (s === t) = Boolean (termsem_ext δ γ v sigma s = termsem_ext δ γ v sigma t)
Proof
rw[termsem_ext_def,termsem_def,equation_def,ext_term_frag_builtins_def]
\\ qmatch_goalsub_abbrev_tac `Abstract s1 t1 f1 ' x1`
\\ drule apply_abstract \\ disch_then (qspecl_then [`f1`,`x1`,`s1`,`t1`] mp_tac)
\\ impl_tac
>- (unabbrev_all_tac \\ simp[]
\\ reverse conj_tac
>- (drule abstract_in_funspace_matchable \\ disch_then match_mp_tac
\\ metis_tac[boolean_in_boolset])
\\ match_mp_tac termsem_in_type_ext \\ Cases_on `frag`
\\ simp[] \\ asm_exists_tac \\ fs[valuates_frag_def]
\\ rw[] \\ first_x_assum match_mp_tac
\\ imp_res_tac VFREE_IN_subterm
\\ imp_res_tac subterm_in_term_frag_uninst
\\ imp_res_tac term_frag_uninst_in_type_frag
\\ fs[]
)
\\ strip_tac \\ simp[]
\\ unabbrev_all_tac \\ simp[]
\\ qmatch_goalsub_abbrev_tac `Abstract s1 t1 f1 ' x1`
\\ drule apply_abstract \\ disch_then (qspecl_then [`f1`,`x1`,`s1`,`t1`] mp_tac)
\\ impl_tac
>- (unabbrev_all_tac \\ simp[]
\\ reverse conj_tac
>- metis_tac[boolean_in_boolset]
\\ fs[term_ok_def]
\\ match_mp_tac termsem_in_type_ext \\ Cases_on `frag`
\\ simp[] \\ asm_exists_tac \\ fs[valuates_frag_def]
\\ rw[] \\ first_x_assum match_mp_tac
\\ imp_res_tac VFREE_IN_subterm
\\ imp_res_tac subterm_in_term_frag_uninst
\\ imp_res_tac term_frag_uninst_in_type_frag
\\ fs[]
)
\\ simp[]
QED
Theorem valuates_frag_builtins:
valuates_frag frag (ext_type_frag_builtins δ) v sigma = valuates_frag frag δ v sigma
Proof
rw[valuates_frag_def,ext_type_frag_idem]
QED
Theorem allTypes_typeof:
!a. welltyped a ==> set(allTypes'(typeof a)) ⊆ set(allTypes a)
Proof
Induct >> rw[allTypes_def] >> fs[allTypes'_defn] >> rw[]
>> match_mp_tac SUBSET_TRANS
>> asm_exists_tac >> simp[]
QED
Theorem terms_of_frag_equation:
!frag sig a b. is_sig_fragment sig frag /\ welltyped (a === b) ==> (a === b ∈ terms_of_frag frag <=> a ∈ terms_of_frag frag /\ b ∈ terms_of_frag frag)
Proof
rw[equation_def,EQ_IMP_THM]
>> rpt(match_mp_tac terms_of_frag_combI >> asm_exists_tac >> rw[])
>> drule terms_of_frag_combE \\ strip_tac
>> rpt(first_assum dxrule \\ rpt(disch_then drule) \\ strip_tac)
>> Cases_on `frag` >> FULL_SIMP_TAC std_ss [is_sig_fragment_def,terms_of_frag_def]
>> rw[consts_of_term_def,allTypes_def,allTypes'_defn,INTER_DEF,
nonbuiltin_constinsts_def,builtin_consts_def]
>- (rw[PULL_FORALL,SUBSET_DEF] >> metis_tac[])
>> match_mp_tac SUBSET_TRANS
>> drule allTypes_typeof
>> strip_tac >> asm_exists_tac
>> fs[]
QED
Theorem terms_of_frag_uninst_equation:
!frag sig sigma a b. is_sig_fragment sig frag /\ welltyped (a === b)
==> (a === b ∈ terms_of_frag_uninst frag sigma <=> a ∈ terms_of_frag_uninst frag sigma /\ b ∈ terms_of_frag_uninst frag sigma)
Proof
rw[equation_def,EQ_IMP_THM]
>> rpt(match_mp_tac terms_of_frag_uninst_combI >> asm_exists_tac >> rw[])
>> drule terms_of_frag_uninst_combE \\ strip_tac
>> rpt(first_assum dxrule \\ rpt(disch_then drule) \\ strip_tac)
>> Cases_on `frag` >> FULL_SIMP_TAC std_ss [is_sig_fragment_def,terms_of_frag_uninst_def]
>> rw[consts_of_term_def,allTypes_def,allTypes'_defn,INTER_DEF,
nonbuiltin_constinsts_def,builtin_consts_def]
>- (rw[PULL_FORALL,SUBSET_DEF] >> metis_tac[])
>> qpat_x_assum `b ∈ _` mp_tac
>> simp[IN_GSPEC_IFF] >> strip_tac
>> match_mp_tac SUBSET_TRANS
>> PURE_ONCE_REWRITE_TAC[CONJ_SYM] >> asm_exists_tac
>> simp[]
>> `set(allTypes' (typeof b)) ⊆ set(allTypes b)` by metis_tac[allTypes_typeof]
>> pop_assum mp_tac
>> rpt(pop_assum kall_tac)
>> rw[SUBSET_DEF,MEM_FLAT,MEM_MAP,PULL_EXISTS]
>> metis_tac[]
QED
Triviality typeof_VSUBST:
!l a. EVERY (\(x,y). typeof x = typeof y) l /\ welltyped a
==> typeof (VSUBST l a) = typeof a
Proof
Induct_on `a` >> rw[VSUBST_def]
>- (rw[REV_ASSOCD_ALOOKUP] >> EVERY_CASE_TAC >> fs[] >> imp_res_tac ALOOKUP_MEM
>> fs[EVERY_MEM,MEM_MAP] >> first_x_assum drule >> pairarg_tac >> fs[]
>> rveq >> fs[])
>> fs[dest_var_def]
>> first_x_assum match_mp_tac >> fs[EVERY_FILTER_IMP]
QED
Triviality TYPE_SUBST_tyvars:
!sigma ty. tyvars ty = [] ==> TYPE_SUBST sigma ty = ty
Proof
ho_match_mp_tac TYPE_SUBST_ind >> rpt strip_tac
>> fs[tyvars_def]
>> match_mp_tac LIST_EQ >> rw[]
>> drule EL_MEM >> strip_tac
>> first_x_assum drule
>> impl_tac
>> qmatch_asmsub_abbrev_tac `a1 = a2`
>> `!x. MEM x a1 = MEM x a2` by simp[]
>> unabbrev_all_tac >> fs[MEM_FOLDR_LIST_UNION]
>> pop_assum(mp_tac o CONV_RULE(SWAP_FORALL_CONV))
>> disch_then(qspec_then `EL x tys` mp_tac)
>> simp[] >> simp[MEM_SPLIT]
>> disch_then(mp_tac o CONV_RULE(RESORT_FORALL_CONV List.rev))
>> disch_then(mp_tac o CONV_RULE(SWAP_FORALL_CONV))
>> disch_then(qspec_then `[]` mp_tac)
>> simp[] >> metis_tac[list_CASES,EL_MAP]
QED
Triviality TYPE_SUBST_2:
!sigma ty. EVERY (λty. tyvars ty = []) (MAP FST sigma)
==> TYPE_SUBST sigma (TYPE_SUBST sigma ty) = TYPE_SUBST sigma ty
Proof
ho_match_mp_tac TYPE_SUBST_ind >> rpt strip_tac
>- (fs[TYPE_SUBST_def] >> fs[REV_ASSOCD_ALOOKUP]
>> PURE_TOP_CASE_TAC >> fs[]
>> imp_res_tac ALOOKUP_MEM
>> imp_res_tac ALOOKUP_NONE
>> fs[MEM_MAP,EVERY_MEM] >> TRY(pairarg_tac >> rveq >> fs[])
>> fs[] >> fs[REV_ASSOCD_ALOOKUP]
>> every_case_tac >> fs[]
>> match_mp_tac TYPE_SUBST_tyvars >> first_assum match_mp_tac >> simp[]
>> Q.REFINE_EXISTS_TAC `(_,_)` >> simp[] >> metis_tac[])
>> fs[TYPE_SUBST_def] >> match_mp_tac LIST_EQ
>> rw[EL_MAP] >> drule EL_MEM
>> metis_tac[]
QED
Theorem fresh_vsubst:
!t x ty tm. ~VFREE_IN (Var x ty) t ==> VSUBST [(tm,Var x ty)] t = t
Proof
Induct >> rpt strip_tac >> fs[VSUBST_def,VFREE_IN_def,REV_ASSOCD]
>> first_assum drule >> strip_tac >> fs[] >> rw[] >> fs[]
QED
Theorem ALOOKUP_SOME_EQ:
!l x y. ALOOKUP l x = SOME y <=> (?l1 l2.
l = l1 ++ (x,y)::l2 /\ ALOOKUP l1 x = NONE)
Proof
Induct >- fs[ALOOKUP_def]
>> Cases >> rw[ALOOKUP_def,EQ_IMP_THM]
>- (qexists_tac `[]` >> fs[])
>- (Cases_on `l1` >> fs[] >> rveq >> fs[ALOOKUP_def])
>- (Q.REFINE_EXISTS_TAC `(_,_)::l1`
>> simp[])
>- (Cases_on `l1` >> fs[] >> rveq >> fs[ALOOKUP_def] >> rfs[]
>> HINT_EXISTS_TAC >> simp[])
QED
Triviality VSUBST_id_lemma:
!tm ilist v. welltyped tm ==> VSUBST (ilist ++ [(Var x ty,Var x ty)]) tm = VSUBST ilist tm
Proof
Induct >> rpt strip_tac
>> fs[VSUBST_def,REV_ASSOCD_ALOOKUP]
>- (rpt(PURE_TOP_CASE_TAC >> fs[]) >> fs[ALOOKUP_APPEND] >> rveq)
>> Cases_on `Var x ty = Var n ty'`
>> fs[FILTER_APPEND]
>> PURE_ONCE_REWRITE_TAC [CONS_APPEND] >> PURE_ONCE_REWRITE_TAC [APPEND_ASSOC]
>> fs[]
QED
Theorem RACONV_TRANS_matchable:
!env env2 env3 t1 t2 t3. RACONV env2 (t1,t2) /\ RACONV env3 (t2,t3) /\
MAP FST env2 = MAP FST env /\ MAP SND env2 = MAP FST env3 /\
MAP SND env3 = MAP SND env /\ LENGTH env = LENGTH env2
==>
RACONV env (t1,t3)
Proof
rpt strip_tac
>> qpat_x_assum `RACONV env2 _` assume_tac >> drule RACONV_TRANS
>> disch_then(qspecl_then [`MAP SND env`,`t3`] mp_tac)
>> simp[ZIP_MAP_FST_SND_EQ] >> disch_then match_mp_tac
>> qpat_x_assum `MAP SND env3 = _` (assume_tac o GSYM)
>> simp[ZIP_MAP_FST_SND_EQ]
QED
Theorem RACONV_TRANS_matchable2:
!env vs t1 t2 t3. RACONV (ZIP (MAP FST env, vs)) (t1,t2)
/\ RACONV (ZIP (vs, MAP SND env)) (t2,t3) /\
LENGTH env = LENGTH vs
==>
RACONV env (t1,t3)
Proof
rpt strip_tac
>> last_x_assum assume_tac >> drule RACONV_TRANS
>> disch_then(qspecl_then [`MAP SND env`,`t3`] mp_tac)
>> simp[MAP_ZIP,ZIP_MAP_FST_SND_EQ]
QED
Theorem VSUBST_id =
VSUBST_id_lemma
|> CONV_RULE(SWAP_FORALL_CONV)
|> Q.SPEC `[]` |> SIMP_RULE list_ss [VSUBST_NIL]
Theorem NOT_VFREE_IN_VSUBST:
!x ty v tm. ~VFREE_IN (Var x ty) tm /\ welltyped tm ==> VSUBST [(v,Var x ty)] tm = tm
Proof
Induct_on `tm`
>> rw[VSUBST_def,REV_ASSOCD]
>> fs[]
QED
Theorem termsem_raconv:
∀env tp. RACONV env tp ⇒
∀δ γ sigma v1 v2.
(∀x1 ty1 x2 ty2.
ALPHAVARS env (Var x1 ty1,Var x2 ty2)
/\ VFREE_IN (Var x1 ty1) (FST tp) /\ VFREE_IN (Var x2 ty2) (SND tp) ⇒
(termsem δ γ v1 sigma (Var x1 ty1) =
termsem δ γ v2 sigma (Var x2 ty2))) ∧
EVERY (λ(x,y). welltyped x ∧ welltyped y ∧ typeof x = typeof y) env ∧
welltyped (FST tp) ∧ welltyped (SND tp)
⇒
termsem δ γ v1 sigma (FST tp) = termsem δ γ v2 sigma (SND tp)
Proof
ho_match_mp_tac RACONV_strongind >>
rpt conj_tac >> simp[termsem_def] >>
TRY (metis_tac[]) >>
rpt gen_tac >> strip_tac >>
rpt gen_tac >> strip_tac >>
qmatch_assum_abbrev_tac`RACONV env1 p1` >>
qspecl_then[`env1`,`p1`]mp_tac RACONV_TYPE >>
simp[Abbr`env1`,Abbr`p1`] >> strip_tac >>
rw[termsem_def] >> fs[] >> rw[] >>
rw[FUN_EQ_THM] >> rpt AP_TERM_TAC >>
rw[FUN_EQ_THM] >>
first_x_assum (match_mp_tac o MP_CANON) >>
simp[ALPHAVARS_def,combinTheory.APPLY_UPDATE_THM] >>
rw[] >> fs[]
QED
Theorem termsem_aconv:
∀δ γ v t1 t2. ACONV t1 t2 ∧ welltyped t1 ∧ welltyped t2 ⇒
termsem δ γ v sigma t1 = termsem δ γ v sigma t2
Proof
rw[ACONV_def] >>
imp_res_tac termsem_raconv >>
rfs[ALPHAVARS_def] >>
metis_tac[ACONV_def]
QED
Theorem termsem_frees:
∀δ γ t v1 v2.
welltyped t ∧
(∀x ty. VFREE_IN (Var x ty) t ⇒ v1 (x,ty) = v2 (x,ty))
⇒ termsem δ γ v1 sigma t = termsem δ γ v2 sigma t
Proof
ntac 2 gen_tac >> Induct >>
simp[termsem_def] >- metis_tac[] >>
rw[] >> rw[termsem_def] >> rpt AP_TERM_TAC >>
rw[FUN_EQ_THM] >>
first_x_assum match_mp_tac >>
rw[combinTheory.APPLY_UPDATE_THM,FUN_EQ_THM] >>
first_x_assum match_mp_tac >> fs[]
QED
Theorem TYPE_SUBSTf_TYPE_SUBST_compose:
!ty sigma sigma2.
TYPE_SUBSTf sigma (TYPE_SUBST sigma2 ty) =
TYPE_SUBSTf (λx. TYPE_SUBSTf sigma (REV_ASSOCD (Tyvar x) sigma2 (Tyvar x))) ty
Proof
ho_match_mp_tac type_ind >> rpt strip_tac
>> rw[]
>> simp[MAP_MAP_o,o_DEF,MAP_EQ_f] >> rw[]
>> fs[EVERY_MEM]
QED
Theorem termsem_simple_inst:
∀δ γ sig sigma tm tyin tmenv.
welltyped tm ∧ term_ok sig tm ∧
ALL_DISTINCT (bv_names tm) ∧
DISJOINT (set (bv_names tm)) {x | ∃ty. VFREE_IN (Var x ty) tm}
⇒
∀v.
termsem δ γ v sigma (simple_inst tyin tm) =
termsem δ
γ
((λ(x,ty). v (x, TYPE_SUBST tyin ty)))
(λx. TYPE_SUBSTf sigma (REV_ASSOCD (Tyvar x) tyin (Tyvar x)))
tm
Proof
Induct_on `tm` >> simp[termsem_def,term_ok_def]
>- rw[TYPE_SUBSTf_TYPE_SUBST_compose]
>- (rw[]
>> fs[ALL_DISTINCT_APPEND,IN_DISJOINT]
>> metis_tac[]) >>
rw[] >> rw[] >> rw[termsem_def,TYPE_SUBST_compose,TYPE_SUBSTf_TYPE_SUBST_compose] >>
qmatch_abbrev_tac`Abstract _ r1 f1 = Abstract _ r2 f2` >>
qmatch_assum_rename_tac`welltyped tm` >>
`r2 = r1` by (
unabbrev_all_tac >>
qspecl_then[`tm`,`tyin`]mp_tac simple_inst_has_type >> rw[] >>
imp_res_tac WELLTYPED_LEMMA >> rw[TYPE_SUBSTf_TYPE_SUBST_compose]) >>
rw[] >> rpt AP_TERM_TAC >>
unabbrev_all_tac >> rw[FUN_EQ_THM] >>
first_x_assum(qspecl_then[`δ`,`γ`,`sig`,`sigma`,`tyin`]mp_tac) >> simp[] >>
impl_tac >- ( fs[IN_DISJOINT] >> metis_tac[] ) >>
rw[] >>
match_mp_tac termsem_frees >>
rw[] >>
rw[combinTheory.APPLY_UPDATE_THM] >>
metis_tac[]
QED
Theorem termsem_INST:
∀δ γ sig sigma tm tyin.
term_ok sig tm ⇒
∀v.
termsem δ γ v sigma (INST tyin tm) =
termsem δ γ
((λ(x,ty). v (x, TYPE_SUBST tyin ty)))
(λx. TYPE_SUBSTf sigma (REV_ASSOCD (Tyvar x) tyin (Tyvar x)))
tm
Proof
rw[] >> imp_res_tac term_ok_welltyped >>
Q.ISPECL_THEN[`{x | ∃ty. VFREE_IN (Var x ty) tm}`,`tm`]mp_tac fresh_term_def >>
simp[] >>
Q.PAT_ABBREV_TAC`fm = fresh_term X tm` >> strip_tac >>
`ACONV (INST tyin tm) (INST tyin fm)` by (
match_mp_tac ACONV_INST >> metis_tac[] ) >>
`welltyped (INST tyin tm)` by metis_tac[INST_WELLTYPED] >>
`welltyped (INST tyin fm)` by metis_tac[INST_WELLTYPED] >>
`termsem δ γ v sigma (INST tyin tm) = termsem δ γ v sigma (INST tyin fm)` by
metis_tac[termsem_aconv] >>
`{x | ∃ty. VFREE_IN (Var x ty) tm} = {x | ∃ty. VFREE_IN (Var x ty) fm}` by (
simp[EXTENSION] >> metis_tac[VFREE_IN_ACONV] ) >>
`INST tyin fm = simple_inst tyin fm` by
metis_tac[INST_simple_inst] >>
rw[] >>
metis_tac[SIMP_RULE(srw_ss())[]termsem_simple_inst,termsem_aconv,term_ok_aconv]
QED
Theorem terms_of_frag_uninst_equationE:
!f a b sig sigma. is_sig_fragment sig f /\ a === b ∈ terms_of_frag_uninst f sigma
/\ welltyped(a === b)==>
a ∈ terms_of_frag_uninst f sigma /\ b ∈ terms_of_frag_uninst f sigma
Proof
Cases >> simp[equation_def] >> rpt gen_tac >> rpt(disch_then strip_assume_tac)
>> drule terms_of_frag_uninst_combE
>> disch_then drule >> simp[] >> strip_tac
>> drule terms_of_frag_uninst_combE
>> disch_then drule
>> simp[]
QED
Theorem terms_of_frag_uninst_welltyped:
!t frag sigma. t ∈ terms_of_frag_uninst frag sigma ==> welltyped t
Proof
Cases_on `frag` >> rw[terms_of_frag_uninst_def]
QED
Theorem allTypes'_nonbuiltin:
!x y. MEM x (allTypes' y)
==> x ∈ nonbuiltin_types
Proof
CONV_TAC SWAP_FORALL_CONV
>> ho_match_mp_tac allTypes'_defn_ind >> rpt strip_tac
>> fs[allTypes'_defn,nonbuiltin_types_def,is_builtin_type_def]
>> every_case_tac >> fs[is_builtin_type_def,EVERY_MEM,MEM_FLAT,MEM_MAP,PULL_EXISTS]
>> fs[listTheory.LENGTH_EQ_NUM_compute,is_builtin_name_def]
>- metis_tac[]
QED
Theorem ground_TYPE_SUBSTf:
∀ty. (∀ty. tyvars (sigma ty) = []) ==> tyvars (TYPE_SUBSTf sigma ty) = []
Proof
ho_match_mp_tac type_ind >> rpt strip_tac >>
rw[tyvars_def,TYPE_SUBSTf_def] >> fs[EVERY_MEM] >>
qmatch_goalsub_abbrev_tac `a1 = a2` >>
`set a1 = set a2` suffices_by (unabbrev_all_tac >> fs[]) >>
unabbrev_all_tac >> PURE_ONCE_REWRITE_TAC [FUN_EQ_THM] >>
strip_tac >> PURE_ONCE_REWRITE_TAC[SIMP_RULE std_ss [IN_DEF] MEM_FOLDR_LIST_UNION] >>
rw[GSYM IMP_DISJ_THM] >> fs[LIST_TO_SET_MAP]
QED
Theorem consts_of_term_ok:
!tm q r. term_ok sig tm /\ (q,r) ∈ consts_of_term tm ==> type_ok (tysof sig) r
Proof
Induct >> rw[term_ok_def,type_ok_def,consts_of_term_def] >> fs[consts_of_term_def]
>> metis_tac[]
QED
Theorem consts_of_term_term_ok:
!tm q r sig. term_ok sig tm /\ (q,r) ∈ consts_of_term tm ==> term_ok sig (Const q r)
Proof
Induct >> rw[term_ok_def,type_ok_def,consts_of_term_def] >> fs[consts_of_term_def]
>> metis_tac[term_ok_def]
QED
Triviality TYPE_SUBSTf_lemma:
!ty sigma sigma'. (!tv. MEM tv (tyvars ty) ==> REV_ASSOCD (Tyvar tv) sigma' (Tyvar tv) = sigma tv) ==>
TYPE_SUBSTf sigma ty = TYPE_SUBST sigma' ty
Proof
ho_match_mp_tac type_ind >> rpt strip_tac
>- fs[tyvars_def]
>> fs[tyvars_def,MEM_FOLDR_LIST_UNION,PULL_EXISTS]
>> rw[MAP_EQ_f]
>> fs[EVERY_MEM] >> rpt(first_x_assum drule) >> rpt strip_tac
>> metis_tac[]
QED
Theorem TYPE_SUBSTf_TYPE_SUBST:
!ty sigma. ?sigma'. TYPE_SUBSTf sigma ty = TYPE_SUBST sigma' ty
Proof
rpt strip_tac
>> qexists_tac `MAP (λx. (sigma x,Tyvar x)) (tyvars ty)`
>> match_mp_tac TYPE_SUBSTf_lemma
>> rw[] >> fs[REV_ASSOCD_ALOOKUP,o_DEF]
>> CASE_TAC
>- fs[ALOOKUP_NONE,MEM_MAP,PULL_FORALL,GSYM RIGHT_FORALL_OR_THM]
>> imp_res_tac ALOOKUP_MEM
>> fs[MEM_MAP] >> rveq >> fs[]
QED
Theorem type_ok_TYPE_SUBSTf:
∀s sigma ty.
type_ok s ty ∧
(∀ty. type_ok s (sigma ty))
⇒ type_ok s (TYPE_SUBSTf sigma ty)
Proof
gen_tac >> ho_match_mp_tac TYPE_SUBSTf_ind >>
simp[type_ok_def] >> rw[EVERY_MAP,EVERY_MEM]
QED
Theorem FOLDR_LIST_UNION_empty:
EVERY (λx. tyvars x = []) tys ==> (FOLDR (λx y. LIST_UNION (tyvars x) y) [] tys = [])
Proof
Induct_on `tys` >> fs[]
QED
Theorem FOLDR_LIST_UNION_empty':
(FOLDR (λx y. LIST_UNION (tyvars x) y) [] tys = []) ==> EVERY (λx. tyvars x = []) tys
Proof
rw[] >> fs[EVERY_MEM] >>
`!z. MEM z (FOLDR (λx y. LIST_UNION (tyvars x) y) [] tys) = F`
by rw[] >>
last_x_assum kall_tac >>
fs[MEM_FOLDR_LIST_UNION] >> rw[] >>
rename1 `MEM ty tys` >>
fs[GSYM IMP_DISJ_THM] >>
first_x_assum(assume_tac o CONV_RULE SWAP_FORALL_CONV) >>
fs[GSYM PULL_FORALL] >>
first_x_assum drule >>
pop_assum kall_tac >>
rename1 `l = []` >>
Induct_on `l` >> simp[] >>
metis_tac[]
QED
Triviality LIST_LENGTH_2:
LENGTH l = 2 ⇔ ∃e1 e2. l = [e1; e2]
Proof
Cases_on ‘l’ \\ fs [] \\ Cases_on ‘t’ \\ fs []
QED
Theorem allTypes'_no_tyvars:
!ty x. MEM x (allTypes' ty) /\ tyvars ty = [] ==> tyvars x = []
Proof
ho_match_mp_tac allTypes'_defn_ind >> rw[tyvars_def]
>> `!x. ~MEM x (FOLDR (λx y. LIST_UNION (tyvars x) y) [] tys)` by fs[]
>> qpat_x_assum `_ = _` kall_tac
>> fs[MEM_FOLDR_LIST_UNION,allTypes'_defn]
>> EVERY_CASE_TAC >> fs[]
>> fs[LIST_LENGTH_2] >> rveq >> fs[]
>> fs[DISJ_IMP_THM,FORALL_AND_THM]
>- (`tyvars e1 = []`
by(CCONTR_TAC >> `?z. MEM z (tyvars e1)` by(Cases_on `tyvars e1` >> fs[] >> metis_tac[])
>> metis_tac[]) >> metis_tac[])
>- (`tyvars e2 = []`
by(CCONTR_TAC >> `?z. MEM z (tyvars e2)` by(Cases_on `tyvars e2` >> fs[] >> metis_tac[])
>> metis_tac[]) >> metis_tac[])
>> fs[Once DISJ_SYM]
>> fs[GSYM IMP_DISJ_THM]
>> fs[tyvars_def]
>> match_mp_tac FOLDR_LIST_UNION_empty >> fs[EVERY_MEM]
>> rw[]
>> CCONTR_TAC
>> Cases_on `tyvars x` >> fs[]
>> last_x_assum(qspecl_then [`h`,`x`] assume_tac)
>> fs[]
QED
Theorem allTypes'_TYPE_SUBSTf_no_tyvars:
∀sigma y x. MEM x (allTypes' (TYPE_SUBSTf sigma y)) /\ (!ty. tyvars (sigma ty) = []) ==> tyvars x = []
Proof
ho_match_mp_tac TYPE_SUBSTf_ind >> rpt strip_tac
>- (fs[allTypes'_defn] >> match_mp_tac allTypes'_no_tyvars >> metis_tac[])
>> fs[allTypes'_defn]
>> PURE_FULL_CASE_TAC
>- fs[]
>> qpat_x_assum `MEM _ _` mp_tac
>> simp[]
>> PURE_FULL_CASE_TAC
>- (fs[MEM_FLAT,MEM_MAP,PULL_EXISTS,PULL_FORALL])
>> simp[]
>> rw[tyvars_def]
>> match_mp_tac FOLDR_LIST_UNION_empty
>> simp[EVERY_MEM,MEM_MAP,PULL_EXISTS] >> rw[]
>> metis_tac[ground_TYPE_SUBSTf]
QED
Theorem terms_of_frag_uninst_term_ok:
!tm. term_ok sig tm /\ (∀ty. tyvars (sigma ty) = []) /\ (∀ty. type_ok (tysof sig) (sigma ty))
==> tm ∈ terms_of_frag_uninst (total_fragment sig) sigma
Proof
rw[total_fragment_def,terms_of_frag_uninst_def]
>> imp_res_tac term_ok_welltyped
>> rw[consts_of_term_def,INTER_DEF,SUBSET_DEF]
>> fs[MEM_MAP,MEM_FLAT,PULL_EXISTS,term_ok_def,ground_types_def]
>> imp_res_tac allTypes'_nonbuiltin
>- (fs[nonbuiltin_constinsts_def,ground_consts_def,builtin_consts_def,PULL_FORALL]
>> Cases_on `x'` >> fs[ground_types_def,consts_of_term_def,ground_TYPE_SUBSTf]
>> imp_res_tac consts_of_term_ok >> fs[type_ok_TYPE_SUBSTf]
>> imp_res_tac consts_of_term_term_ok
>> fs[term_ok_def]
>> rveq
>> fs[type_ok_TYPE_SUBSTf]
>> Q.REFINE_EXISTS_TAC `MAP (TYPE_SUBST v ## I) i ++ v`
>> fs[GSYM TYPE_SUBST_compose] >> metis_tac[TYPE_SUBSTf_TYPE_SUBST])
>> drule allTypes'_TYPE_SUBSTf_no_tyvars
>> disch_then drule >> simp[] >> strip_tac
>> imp_res_tac allTypes_type_ok
>> imp_res_tac type_ok_TYPE_SUBSTf
>> imp_res_tac allTypes'_type_ok
QED
Theorem termsem_simple_subst:
∀tm ilist.
welltyped tm ∧
DISJOINT (set (bv_names tm)) {y | ∃ty u. VFREE_IN (Var y ty) u ∧ MEM u (MAP FST ilist)} ∧
(∀s s'. MEM (s',s) ilist ⇒ ∃x ty. s = Var x ty ∧ s' has_type ty)
⇒
∀δ γ v sigma.
termsem δ γ v sigma (simple_subst ilist tm) =
termsem δ γ
(v =++ MAP ((dest_var ## termsem δ γ v sigma) o (λ(s',s). (s,s')))
(REVERSE ilist))
sigma tm
Proof
Induct >> simp[termsem_def] >- (
simp[REV_ASSOCD_ALOOKUP,APPLY_UPDATE_LIST_ALOOKUP,rich_listTheory.MAP_REVERSE] >>
rw[] >> BasicProvers.CASE_TAC >> rw[termsem_def] >- (
imp_res_tac ALOOKUP_FAILS >>
BasicProvers.CASE_TAC >>
imp_res_tac ALOOKUP_MEM >>
fs[MEM_MAP,EXISTS_PROD] >>
res_tac >> fs[] >> metis_tac[] ) >>
rw[GSYM MAP_MAP_o] >>
qmatch_assum_abbrev_tac`ALOOKUP ls (Var s ty) = SOME x` >>
Q.ISPECL_THEN[`ls`,`termsem δ γ v sigma`,`s`,`ty`]mp_tac ALOOKUP_MAP_dest_var >>
impl_tac >- (simp[EVERY_MAP,EVERY_MEM,FORALL_PROD,Abbr`ls`] >> metis_tac[]) >>
rw[]) >>
rw[] >>
Q.PAT_ABBREV_TAC`il = FILTER X ilist` >>
qmatch_assum_rename_tac`welltyped tm` >>
`simple_subst il tm has_type typeof tm` by (
match_mp_tac (MP_CANON simple_subst_has_type) >>
imp_res_tac WELLTYPED >>
fs[Abbr`il`,EVERY_MEM,EVERY_FILTER,FORALL_PROD] >>
rw[] >> res_tac >> rw[] ) >>
imp_res_tac WELLTYPED_LEMMA >> rw[] >>
simp[termsem_def] >>
rpt AP_TERM_TAC >> simp[FUN_EQ_THM] >> rw[] >>
qmatch_abbrev_tac `termsem δ γ vv sigma xx = yy` >>
first_x_assum(qspec_then`il`mp_tac) >>
impl_tac >- (
simp[Abbr`il`] >> fs[IN_DISJOINT,MEM_FILTER,MEM_MAP,EXISTS_PROD] >>
metis_tac[] ) >>
disch_then(qspecl_then[`δ`,`γ`,`vv`,`sigma`]mp_tac) >>
rw[Abbr`vv`,Abbr`yy`] >>
rpt AP_THM_TAC >> rpt AP_TERM_TAC >>
simp[FUN_EQ_THM,APPLY_UPDATE_LIST_ALOOKUP,rich_listTheory.MAP_REVERSE] >>
Cases >>
simp[GSYM MAP_MAP_o] >>
BasicProvers.CASE_TAC >>
qmatch_assum_abbrev_tac`ALOOKUP (MAP (dest_var ## f) ls) (z,tyr) = X` >>
qunabbrev_tac`X` >>
Q.ISPECL_THEN[`ls`,`f`,`z`,`tyr`]mp_tac ALOOKUP_MAP_dest_var >>
(impl_tac >- (simp[EVERY_MAP,EVERY_MEM,FORALL_PROD,Abbr`ls`,Abbr`il`,MEM_FILTER] >> metis_tac[])) >>
qmatch_assum_abbrev_tac`Abbrev(il = FILTER P ilist)` >>
qmatch_assum_abbrev_tac`Abbrev(ls = MAP sw il)` >>
`ls = FILTER (P o sw) (MAP sw ilist)` by (
simp[Abbr`ls`,Abbr`il`] >>
simp[rich_listTheory.FILTER_MAP] >>
simp[Abbr`P`,Abbr`sw`,combinTheory.o_DEF,UNCURRY,LAMBDA_PROD] ) >>
qunabbrev_tac`ls` >>
simp[ALOOKUP_FILTER,Abbr`P`,Abbr`sw`,combinTheory.o_DEF,LAMBDA_PROD] >- (
rw[combinTheory.APPLY_UPDATE_THM,APPLY_UPDATE_LIST_ALOOKUP] >>
qmatch_assum_abbrev_tac`P ⇒ ALOOKUP ls vv = NONE` >>
Q.ISPECL_THEN[`ls`,`termsem δ γ v sigma`,`z`,`tyr`]mp_tac ALOOKUP_MAP_dest_var >>
impl_tac >- (simp[EVERY_MAP,EVERY_MEM,FORALL_PROD,Abbr`ls`] >> metis_tac[]) >>
rw[] >> fs[Abbr`P`] ) >>
simp[combinTheory.APPLY_UPDATE_THM,APPLY_UPDATE_LIST_ALOOKUP] >>
rw[Abbr`f`] >>
qmatch_assum_abbrev_tac`ALOOKUP ls vv = SOME zz` >>
Q.ISPECL_THEN[`ls`,`termsem δ γ v sigma`,`z`,`tyr`]mp_tac ALOOKUP_MAP_dest_var >>
(impl_tac >- (simp[EVERY_MAP,EVERY_MEM,FORALL_PROD,Abbr`ls`] >> metis_tac[])) >>
rw[] >> fs[Abbr`zz`] >>
match_mp_tac termsem_frees >>
rw[combinTheory.APPLY_UPDATE_THM] >>
imp_res_tac ALOOKUP_MEM >>
fs[Abbr`ls`,MEM_MAP,FORALL_PROD,EXISTS_PROD] >>
metis_tac[welltyped_def]
QED
Theorem termsem_VSUBST:
∀tm ilist.
welltyped tm ∧
(∀s s'. MEM (s',s) ilist ⇒ ∃x ty. s = Var x ty ∧ s' has_type ty) ⇒
∀δ γ v sigma.
termsem δ γ v sigma (VSUBST ilist tm) =
termsem δ γ
(v =++ MAP ((dest_var ## termsem δ γ v sigma) o (λ(s',s). (s,s')))
(REVERSE ilist))
sigma tm
Proof
rw[] >>
Q.ISPECL_THEN[`{y | ∃ty u. VFREE_IN (Var y ty) u ∧ MEM u (MAP FST ilist)}`,`tm`]mp_tac fresh_term_def >>
simp[] >>
Q.PAT_ABBREV_TAC`fm = fresh_term X tm` >> strip_tac >>
`ACONV (VSUBST ilist tm) (VSUBST ilist fm)` by (
match_mp_tac ACONV_VSUBST >> metis_tac[] ) >>
`welltyped (VSUBST ilist tm)` by metis_tac[VSUBST_WELLTYPED] >>
`welltyped (VSUBST ilist fm)` by metis_tac[VSUBST_WELLTYPED] >>
`termsem δ γ v sigma (VSUBST ilist tm) = termsem δ γ v sigma (VSUBST ilist fm)` by
metis_tac[termsem_aconv] >>
`VSUBST ilist fm = simple_subst ilist fm` by
metis_tac[VSUBST_simple_subst] >>
rw[] >>
metis_tac[termsem_simple_subst,termsem_aconv]
QED
Theorem is_interpretation_reduce:
∀δ γ tyenv tmenv tyenv' tmenv'.
tyenv ⊑ tyenv' ∧ tmenv ⊑ tmenv' ∧
is_frag_interpretation (total_fragment (tyenv',tmenv')) δ γ ⇒
is_frag_interpretation (total_fragment (tyenv,tmenv)) δ γ
Proof
rw[total_fragment_def,is_frag_interpretation_def,is_type_frag_interpretation_def,GSYM PFORALL_THM]
>- (first_x_assum match_mp_tac >> fs[ground_types_def,tyvars_def] >> metis_tac[type_ok_extend])
>> first_x_assum match_mp_tac
>> fs[ground_consts_def,ground_types_def] >> metis_tac[type_ok_extend,term_ok_extend]
QED
Theorem inhabited_ext:
!tyfrag ty δ. is_set_theory ^mem ==> ty ∈ builtin_closure tyfrag
/\ tyfrag ⊆ nonbuiltin_types
/\ (∀ty. ty ∈ tyfrag ⇒ inhabited (δ ty))
==> inhabited (ext_type_frag_builtins δ ty)
Proof
simp[GSYM AND_IMP_INTRO,GSYM PULL_FORALL,IN_DEF] >> strip_tac
>> ho_match_mp_tac builtin_closure_ind
>> rpt strip_tac
>- (simp[Once ext_type_frag_builtins_def] >>
rpt(PURE_FULL_CASE_TAC >> fs[] >> rveq) >>
fs[nonbuiltin_types_def,SUBSET_DEF,IN_DEF] >>
rpt(first_x_assum drule) >> fs[is_builtin_type_def])
>- (simp[Once ext_type_frag_builtins_def] >>
metis_tac[boolean_in_boolset])
>- (simp[Once ext_type_frag_builtins_def] >>
metis_tac[funspace_inhabited])
QED
Theorem exists_valuation:
!frag sig δ γ ty. is_set_theory ^mem ==>
is_frag_interpretation frag δ γ
/\ is_sig_fragment sig frag
/\ ty ∈ ground_types sig
==> ?v:'U valuation. valuates_frag frag δ v (K ty)
Proof
Cases
>> rw[is_frag_interpretation_def,is_type_frag_interpretation_def,valuates_frag_def,
types_of_frag_def,is_sig_fragment_def]
>> Ho_Rewrite.PURE_ONCE_REWRITE_TAC [PFORALL_THM]
>> simp[ELIM_UNCURRY]
>> Ho_Rewrite.PURE_ONCE_REWRITE_TAC [GSYM SKOLEM_THM]
>> Cases >> rw[RIGHT_EXISTS_IMP_THM]
>> metis_tac[inhabited_ext]
QED
Theorem exists_sigma_valuation:
!frag sig δ γ sigma. is_set_theory ^mem ==>
is_frag_interpretation frag δ γ
/\ is_sig_fragment sig frag
/\ (!ty. sigma ty ∈ ground_types sig)
==> ?v:'U valuation. valuates_frag frag δ v sigma
Proof
Cases
>> rw[is_frag_interpretation_def,is_type_frag_interpretation_def,valuates_frag_def,
types_of_frag_def,is_sig_fragment_def]
>> Ho_Rewrite.PURE_ONCE_REWRITE_TAC [PFORALL_THM]
>> simp[ELIM_UNCURRY]
>> Ho_Rewrite.PURE_ONCE_REWRITE_TAC [GSYM SKOLEM_THM]
>> Cases >> rw[RIGHT_EXISTS_IMP_THM]
>> metis_tac[inhabited_ext]
QED
Theorem exists_valuation_bool:
!frag sig δ γ. is_set_theory ^mem ==>
is_frag_interpretation frag δ γ
/\ is_sig_fragment sig frag
==> ?v:'U valuation. valuates_frag frag δ v (K Bool)
Proof
Cases
>> rw[is_frag_interpretation_def,is_type_frag_interpretation_def,valuates_frag_def,
types_of_frag_def,is_sig_fragment_def]
>> Ho_Rewrite.PURE_ONCE_REWRITE_TAC [PFORALL_THM]
>> simp[ELIM_UNCURRY]
>> Ho_Rewrite.PURE_ONCE_REWRITE_TAC [GSYM SKOLEM_THM]
>> Cases >> rw[RIGHT_EXISTS_IMP_THM]
>> metis_tac[inhabited_ext]
QED
Theorem satisfies_reduce:
is_set_theory ^mem ⇒
∀δ γ tyenv tmenv tyenv' tmenv' h c.
is_std_sig (tyenv,tmenv) ∧
tyenv ⊑ tyenv' ∧
tmenv ⊑ tmenv' ∧
EVERY (term_ok (tyenv,tmenv)) (c::h) ∧
is_frag_interpretation (total_fragment(tyenv',tmenv')) δ γ ∧
satisfies_t (tyenv',tmenv') δ γ (h,c) ⇒
satisfies_t (tyenv,tmenv) δ γ (h,c)
Proof
rw[satisfies_t_def,satisfies_def] >>
drule exists_sigma_valuation >>
qspec_then `(tyenv',tmenv')` assume_tac total_fragment_is_fragment >>
rpt(disch_then drule) >> disch_then(qspec_then `sigma` mp_tac) >>
impl_tac >- (rw[ground_types_def] >> metis_tac[type_ok_extend]) >>
strip_tac >> rename1 `valuates_frag _ _ v2` >>
`valuates_frag
(total_fragment (tyenv',tmenv')) δ
(λ(x,ty). if TYPE_SUBSTf sigma ty ∈ types_of_frag(total_fragment(tyenv,tmenv)) then
v(x,ty)
else v2(x,ty)) sigma`
by(fs[valuates_frag_def] >> metis_tac[]) >>
qmatch_asmsub_abbrev_tac `valuates_frag _ _ v3` >>
imp_res_tac term_ok_welltyped >>
drule_then(qspecl_then [`sigma`,`^mem`] mp_tac) termsem_frees >>
disch_then(qspecl_then [`δ`,`γ`,`v`,`v3`] mp_tac) >>
impl_tac >-
(rw[] >> imp_res_tac VFREE_IN_subterm >>
qspec_then `(tyenv,tmenv)` assume_tac total_fragment_is_fragment >>
drule subterm_in_term_frag_uninst >> rpt(disch_then drule) >>
strip_tac >>
drule term_frag_uninst_in_type_frag >> rpt(disch_then drule) >>
rw[Abbr `v3`]) >>
simp[] >> disch_then kall_tac >>
first_x_assum(match_mp_tac o MP_CANON) >>
simp[] >>
rpt conj_tac
>- metis_tac[type_ok_extend]
>- (fs[EVERY_MEM,ground_terms_uninst_def] >> rw[] >>
rpt(first_x_assum drule) >> rpt strip_tac >>
asm_exists_tac >> fs[ground_types_def] >>
metis_tac[type_ok_extend])
>- (fs[ground_terms_uninst_def,ground_types_def] >>
asm_exists_tac >> fs[] >> metis_tac[type_ok_extend])
>- (fs[terms_of_frag_uninst_def,total_fragment_def,SUBSET_DEF,MEM_FLAT,MEM_MAP,PULL_EXISTS,
ground_consts_def,ground_types_def] >>
metis_tac[type_ok_extend,term_ok_extend])
>- (fs[EVERY_MEM] >> rw[] >> rpt(first_x_assum drule) >> rpt strip_tac >>
fs[terms_of_frag_uninst_def,total_fragment_def,SUBSET_DEF,MEM_FLAT,MEM_MAP,PULL_EXISTS,
ground_consts_def,ground_types_def] >>
metis_tac[type_ok_extend,term_ok_extend])
>- (fs[EVERY_MEM] >> rw[] >> rpt(first_x_assum drule) >> rpt strip_tac >>
imp_res_tac term_ok_welltyped >>
drule_then(qspecl_then [`sigma`,`^mem`] mp_tac) termsem_frees >>
disch_then(qspecl_then [`δ`,`γ`,`v`,`v3`] mp_tac) >>
impl_tac >-
(rw[] >> imp_res_tac VFREE_IN_subterm >>
qspec_then `(tyenv,tmenv)` assume_tac total_fragment_is_fragment >>
drule subterm_in_term_frag_uninst >> rpt(disch_then drule) >>
strip_tac >>
drule term_frag_uninst_in_type_frag >> rpt(disch_then drule) >>
rw[Abbr `v3`]) >>
simp[])
QED
Theorem models_reduce:
is_set_theory ^mem ⇒
∀δ γ tyenv tmenv axs tyenv' tmenv' axs'.
is_std_sig (tyenv,tmenv) ∧
tyenv ⊑ tyenv' ∧ tmenv ⊑ tmenv' ∧ (axs ⊆ axs') ∧
models δ γ ((tyenv',tmenv'),axs') ∧
(∀p. p ∈ axs ⇒ (term_ok (tyenv,tmenv)) p)
⇒
models δ γ ((tyenv,tmenv),axs)
Proof
rw[models_def]
>- imp_res_tac is_interpretation_reduce
>> match_mp_tac (MP_CANON satisfies_reduce)
>> simp[]
>> rpt(asm_exists_tac >> simp[])
>> conj_tac
>- (qspec_then `(tyenv',tmenv')` assume_tac total_fragment_is_fragment
>> fs[total_fragment_def] >> drule is_frag_interpretation_ext
>> disch_then drule >> disch_then drule >> strip_tac
>> fs[is_frag_interpretation_def,total_fragment_def,is_type_frag_interpretation_def,
ext_type_frag_idem]
>> rw[]
>- (first_x_assum match_mp_tac
>> fs[IN_DEF,builtin_closure_rules,INTER_DEF])
>> fs[ELIM_UNCURRY])
>> metis_tac[SUBSET_DEF]
QED
Definition equal_on_def:
equal_on (sig:sig) i i' ⇔
fleq (total_fragment sig,i) (total_fragment sig, i')
End
val _ = export_theory()