-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathholSyntaxCyclicityScript.sml
8791 lines (8333 loc) · 307 KB
/
holSyntaxCyclicityScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
Implementation of cyclicity check for function definitions
based on [Kunčar, CPP 2015](https://doi.org/10.1145/2676724.2693175)
*)
open preamble totoTheory comparisonTheory ternaryComparisonsTheory mlstringTheory
holSyntaxLibTheory holSyntaxTheory holSyntaxExtraTheory
holSyntaxRenamingTyvarTheory
val _ = new_theory"holSyntaxCyclicity"
val _ = temp_delsimps ["lift_disj_eq", "lift_imp_disj"]
Overload is_instance = ``λty0 ty. ∃i. ty = TYPE_SUBST i ty0``
val _ = Parse.add_infix("≥", 401, Parse.NONASSOC)
Overload "≥" = ``$is_instance``
val _ = Parse.add_infix("#", 401, Parse.NONASSOC)
Overload "#" = ``$orth_ty``
Overload "#" = ``$orth_ci``
Theorem WOP_eq[local]:
∀P. (∃(n:num). P n) <=> ∃n. P n ∧ ∀m. m < n ⇒ ¬P m
Proof
rw[EQ_IMP_THM,WOP]
>> goal_assum (first_assum o mp_then Any mp_tac)
QED
(* lemmata on lists *)
Theorem FRONT_TAKE_PRE =
GSYM $ REWRITE_RULE[GSYM NULL_EQ] TAKE_PRE_LENGTH
Theorem ALL_DISTINCT_MAP_PAIR_FILTER:
(!s f. ALL_DISTINCT (MAP FST s) ==> ALL_DISTINCT (MAP FST (FILTER f s)))
/\ !s f. ALL_DISTINCT (MAP SND s) ==> ALL_DISTINCT (MAP SND (FILTER f s))
Proof
rw[ALL_DISTINCT_FILTER]
>> fs[FILTER_MAP,MEM_MAP,MEM_FILTER,PULL_EXISTS]
>> ((rename1`x = SND y`) ORELSE (rename1`x = FST y`))
>> PairCases_on `y`
>> first_x_assum $ drule_then strip_assume_tac
>> gvs[MEM_SPLIT,FILTER_APPEND,APPEND_EQ_SING]
>> rename1`x:'a#'b`
>> ((rename1`(y0, SND x0)`) ORELSE (rename1`(FST x0,y1)`))
>> PairCases_on `x0`
>> conj_tac
>> qmatch_goalsub_abbrev_tac `FILTER _ (FILTER _ ll)`
>> qpat_x_assum `FILTER _ ll = []` mp_tac
>> qspec_then `ll` mp_tac $ INST_TYPE [alpha |-> ``:'a#'b``] FILTER_F
>> disch_then $ CONV_TAC o DEPTH_CONV o REWR_CONV o GSYM
>> rw[FILTER_FILTER,FILTER_EQ,Excl"FILTER_F"]
QED
val MAP_SWAP = REWRITE_RULE[INVOL_DEF,SWAP_SWAP_INVOL]
(SPEC ``SWAP:'a#'a->'a#'a`` (INST_TYPE [alpha |-> ``:'a#'a``] MAP_INVOL))
Theorem FST_SWAP_SND[local]:
FST o SWAP = SND /\ SND o SWAP = FST
Proof
rw[FUN_EQ_THM,EQ_IMP_THM,SWAP_def]
QED
Theorem EVERY_MAP_o:
∀P f l. EVERY P (MAP f l) ⇔ EVERY ((λx. P x) o f) l
Proof
fs[o_DEF,EVERY_MAP]
QED
Theorem EVERY_MAP_PAIR:
!f g s. EVERY (λ(x,y). f x /\ g y) s
= (EVERY f (MAP FST s) /\ EVERY g (MAP SND s))
Proof
rw[EVERY_MEM,EQ_IMP_THM,MEM_MAP,PULL_EXISTS,FORALL_AND_THM,IMP_CONJ_THM]
>> rpt $ first_x_assum drule
>> ONCE_REWRITE_TAC[GSYM PAIR]
>> fs[]
QED
Theorem LAST_DROP:
!l k. ~NULL (DROP k l) ==> LAST (DROP k l) = LAST l
Proof
Induct
>- fs[LAST,DROP_NIL,NULL_EQ]
>> strip_tac
>> Cases
>- fs[LAST,DROP_NIL,NULL_EQ]
>> first_x_assum (qspec_then `n` assume_tac)
>> rw[DROP,LAST_DEF,DROP_NIL,NULL_EQ]
QED
Theorem DROP_TAKE_NIL:
!ls k. NULL (DROP k (TAKE k ls))
Proof
Induct >> rw[DROP_def,TAKE_def]
QED
Theorem set_SUBSET_EVERY:
!pqs dep. set pqs SUBSET dep <=> EVERY dep pqs
Proof
fs[EVERY_MEM,IN_DEF,SUBSET_DEF]
QED
(* lemmata on LR_TYPE_SUBST *)
Theorem LR_TYPE_SUBST_NIL:
!x. is_const_or_type x ==> LR_TYPE_SUBST [] x = x
Proof
rw[is_const_or_type_eq]
>> fs[LR_TYPE_SUBST_cases,TYPE_SUBST_NIL]
QED
Theorem LR_TYPE_SUBST_type_preserving[simp]:
!t s. is_const_or_type t ==> is_const_or_type (LR_TYPE_SUBST s t)
Proof
rw[is_const_or_type_eq] >> fs[LR_TYPE_SUBST_cases]
QED
Theorem FV_LR_TYPE_SUBST_mono:
!x y s. is_const_or_type x /\ is_const_or_type y /\ set (FV x) ⊆ set (FV y)
==> set (FV (LR_TYPE_SUBST s x)) ⊆ set (FV (LR_TYPE_SUBST s y))
Proof
rw[is_const_or_type_eq,FV_def,LR_TYPE_SUBST_cases]
>> fs[LR_TYPE_SUBST_cases,tvars_def,tyvars_TYPE_SUBST_mono]
QED
Theorem TYPE_SUBST_wlog_eq =
clean_tysubst_TYPE_SUBST_eq |>
CONV_RULE $ ONCE_DEPTH_CONV $ RHS_CONV $
ONCE_REWRITE_CONV $ single TYPE_SUBST_FILTER_SND_tyvars2'
|> CONV_RULE SWAP_FORALL_CONV
Theorem clean_tysubst_LR_TYPE_SUBST_eq:
!p s. is_const_or_type p
==> LR_TYPE_SUBST s p = LR_TYPE_SUBST (clean_tysubst s) p
Proof
rw[is_const_or_type_eq]
>> rw[GSYM clean_tysubst_TYPE_SUBST_eq,LR_TYPE_SUBST_cases,FV_def,sum_case_def,tvars_def]
QED
Theorem LR_TYPE_SUBST_wlog_eq:
!p s. is_const_or_type p
==> LR_TYPE_SUBST s p =
LR_TYPE_SUBST (FILTER ((λx. MEM x (MAP Tyvar (FV p))) ∘ SND) (clean_tysubst s)) p
Proof
rw[is_const_or_type_eq]
>> rw[GSYM TYPE_SUBST_wlog_eq,LR_TYPE_SUBST_def,INST_def,INST_CORE_def,FV_def,sum_case_def,tvars_def]
QED
Theorem LR_TYPE_SUBST_wlog_eq':
!p s. is_const_or_type p
==> ?s'. LR_TYPE_SUBST s p = LR_TYPE_SUBST s' p
/\ ALL_DISTINCT (MAP SND s')
/\ EVERY ((λx. MEM x (MAP Tyvar (FV p))) ∘ SND) s'
Proof
rw[]
>> drule_then (qspec_then `s` assume_tac) LR_TYPE_SUBST_wlog_eq
>> goal_assum drule
>> irule_at Any $ cj 2 ALL_DISTINCT_MAP_PAIR_FILTER
>> fs[EVERY_FILTER,clean_tysubst_ALL_DISTINCT_MAP_SND]
QED
Theorem LR_TYPE_SUBST_wlog_eq'':
!p s. is_const_or_type p
==> LR_TYPE_SUBST s p =
LR_TYPE_SUBST (FILTER ((λx. MEM x (MAP Tyvar (FV p))) ∘ SND) s) p
Proof
rw[is_const_or_type_eq]
>> rw[GSYM TYPE_SUBST_FILTER_SND_tyvars2,o_DEF,LR_TYPE_SUBST_def,INST_def,INST_CORE_def,FV_def,sum_case_def,tvars_def]
QED
Theorem FV_SUBSET_LR_TYPE_SUBST_id:
MEM x (FV p) /\ TYPE_SUBST s (Tyvar x) = Tyvar x /\ is_const_or_type p
==> MEM x (FV (LR_TYPE_SUBST s p))
Proof
rw[is_const_or_type_eq]
>> fs[LR_TYPE_SUBST_cases,FV_def,sum_case_def,tvars_def,tyvars_TYPE_SUBST]
>> goal_assum drule
>> fs[tyvars_def]
QED
(* equivalence relations from section 3 *)
(* equal type substitutions; equal on a set of variables *)
Definition equal_ts_on_def:
equal_ts_on s s' vars =
!x. MEM x vars ==> TYPE_SUBST s (Tyvar x) = TYPE_SUBST s' (Tyvar x)
End
(* equivalent type substitutions; equivalent on a set of variables *)
Definition equiv_ts_on_def:
equiv_ts_on s s' vars =
?η. var_renaming η /\ equal_ts_on s (MAP (TYPE_SUBST η ## I) s' ++ η) vars
End
Theorem equal_ts_on_imp_equiv_ts_on:
!s s' vars. equal_ts_on s s' vars ==> equiv_ts_on s s' vars
Proof
rw[equal_ts_on_def,equiv_ts_on_def,Excl"TYPE_SUBST_def",GSYM TYPE_SUBST_def,GSYM TYPE_SUBST_compose]
>> irule_at Any var_renaming_nil
>> fs[TYPE_SUBST_NIL]
QED
Theorem equal_ts_on_tyvars:
!s s' t. equal_ts_on s s' (tyvars t) <=> TYPE_SUBST s t = TYPE_SUBST s' t
Proof
fs[equal_ts_on_def,TYPE_SUBST_tyvars,tyvars_def]
QED
Theorem equiv_ts_on_tyvars:
!s s' t. equiv_ts_on s s' (tyvars t)
<=> ?e. var_renaming e /\ TYPE_SUBST s t = TYPE_SUBST e (TYPE_SUBST s' t)
Proof
fs[equiv_ts_on_def,equal_ts_on_tyvars,PULL_FORALL,TYPE_SUBST_tyvars,TYPE_SUBST_compose]
QED
Theorem equiv_ts_on_tyvars_Tyapp:
!s s' m l. equiv_ts_on s s' (tyvars $ Tyapp m l)
==> EVERY (λx. equiv_ts_on s s' $ tyvars x) l
Proof
rw[tyvars_Tyapp,equiv_ts_on_tyvars,MAP_MAP_o,MAP_EQ_f,EVERY_MEM]
>> goal_assum drule
>> res_tac
QED
Theorem equal_ts_on_FV:
!s s' t. is_const_or_type t ==> (equal_ts_on s s' (FV t) <=> LR_TYPE_SUBST s t = LR_TYPE_SUBST s' t)
Proof
rw[is_const_or_type_eq]
>> fs[tyvars_def,tvars_def,FV_def,sum_case_def,LR_TYPE_SUBST_cases,equal_ts_on_tyvars]
QED
Theorem LR_TYPE_SUBST_tyvars:
!t s s'. is_const_or_type t ==>
(LR_TYPE_SUBST s t = LR_TYPE_SUBST s' t)
= !x. MEM x (FV t) ==> (TYPE_SUBST s (Tyvar x) = TYPE_SUBST s' (Tyvar x))
Proof
rw[is_const_or_type_eq,EQ_IMP_THM,FV_def]
>> fs[TYPE_SUBST_tyvars,LR_TYPE_SUBST_cases,sum_case_def,tvars_def]
QED
Theorem equiv_ts_on_FV:
!s s' t. is_const_or_type t ==> (equiv_ts_on s s' (FV t)
<=> ?e. var_renaming e /\ LR_TYPE_SUBST s t = LR_TYPE_SUBST e (LR_TYPE_SUBST s' t))
Proof
rw[equiv_ts_on_def,equal_ts_on_FV,LR_TYPE_SUBST_cases,is_const_or_type_eq,GSYM LR_TYPE_SUBST_compose]
QED
Theorem equiv_ts_on_NIL_LR_TYPE_SUBST:
!t r s. is_const_or_type t
==> equiv_ts_on (MAP (TYPE_SUBST s ## I) r ++ s) r (FV t)
= equiv_ts_on s [] (FV $ LR_TYPE_SUBST r t)
Proof
rpt strip_tac >> fs[equiv_ts_on_FV,LR_TYPE_SUBST_compose]
QED
Theorem equiv_ts_on_compose_NIL:
(!s' s vars. equiv_ts_on s' (MAP (TYPE_SUBST s ## I) [] ++ s) vars = equiv_ts_on s' s vars)
/\ !s' s vars. equiv_ts_on s' (MAP (TYPE_SUBST [] ## I) s ++ []) vars = equiv_ts_on s' s vars
Proof
REWRITE_TAC[GSYM TYPE_SUBST_compose,TYPE_SUBST_NIL,equal_ts_on_def,equiv_ts_on_def]
QED
Theorem equiv_ts_on_FV_LR_TYPE_SUBST:
!r r' s t. is_const_or_type t
==> equiv_ts_on r r' (FV $ LR_TYPE_SUBST s t)
= equiv_ts_on (MAP (TYPE_SUBST r ## I) s ++ r) (MAP (TYPE_SUBST r' ## I) s ++ r') (FV t)
Proof
rw[GSYM LR_TYPE_SUBST_compose,equiv_ts_on_FV]
QED
Theorem equal_ts_on_refl:
!s vars. equal_ts_on s s vars
Proof
fs[equal_ts_on_def]
QED
Theorem equiv_ts_on_refl:
!s vars. equiv_ts_on s s vars
Proof
rw[equiv_ts_on_def]
>> qexists_tac `[]`
>> fs[var_renaming_nil,TYPE_SUBST_NIL,GSYM TYPE_SUBST_compose,equal_ts_on_def,equal_ts_on_refl,Excl"TYPE_SUBST_def"]
QED
Theorem equal_ts_on_symm:
!s' s vars. equal_ts_on s' s vars = equal_ts_on s s' vars
Proof
fs[equal_ts_on_def,EQ_IMP_THM,Once EQ_SYM_EQ]
QED
Theorem var_renaming_SWAP_LR_id:
!s t. var_renaming s /\ is_const_or_type t
==> LR_TYPE_SUBST (MAP SWAP s) (LR_TYPE_SUBST s t) = t
Proof
rpt strip_tac
>> drule LR_TYPE_SUBST_NIL
>> disch_then $ CONV_TAC o RHS_CONV o ONCE_REWRITE_CONV o single o GSYM
>> rw[LR_TYPE_SUBST_tyvars,LR_TYPE_SUBST_compose,Excl"TYPE_SUBST_def"]
>> fs[var_renaming_SWAP_id,GSYM TYPE_SUBST_compose]
QED
Theorem var_renaming_SWAP_LR_id':
!s t t'. var_renaming s /\ is_const_or_type t /\ LR_TYPE_SUBST s t = t'
==> t = LR_TYPE_SUBST (MAP SWAP s) t'
Proof
rw[] >> fs[var_renaming_SWAP_LR_id]
QED
Theorem equiv_ts_on_symm:
!s' s vars. equiv_ts_on s' s vars = equiv_ts_on s s' vars
Proof
fs[EQ_IMP_THM,FORALL_AND_THM]
>> reverse conj_asm1_tac
>- metis_tac[]
>> rw[equiv_ts_on_def,equal_ts_on_def,Excl"TYPE_SUBST_def"]
>> rename[`var_renaming e`]
>> qexists_tac `MAP SWAP e`
>> rw[var_renaming_SWAP_IMP,Excl"TYPE_SUBST_def"]
>> fs[GSYM TYPE_SUBST_compose,var_renaming_SWAP_id]
QED
Theorem equal_ts_on_trans:
!s1 s2 s3 vars. equal_ts_on s1 s2 vars /\ equal_ts_on s2 s3 vars
==> equal_ts_on s1 s3 vars
Proof
fs[equal_ts_on_def]
QED
Theorem equiv_ts_on_trans:
!s1 s2 s3 vars. equiv_ts_on s1 s2 vars /\ equiv_ts_on s2 s3 vars
==> equiv_ts_on s1 s3 vars
Proof
rw[equiv_ts_on_def]
>> qexists_tac `clean_tysubst (MAP (TYPE_SUBST η ## I) η' ++ η)`
>> fs[var_renaming_compose,equal_ts_on_def,GSYM clean_tysubst_TYPE_SUBST_eq,GSYM TYPE_SUBST_compose]
QED
Theorem equiv_ts_on_compose:
!e s s' vars. var_renaming e
==> equiv_ts_on s (MAP (TYPE_SUBST e ## I) s' ++ e) vars = equiv_ts_on s s' vars
Proof
rw[equiv_ts_on_def,EQ_IMP_THM,equal_ts_on_def,GSYM TYPE_SUBST_def,Excl"TYPE_SUBST_def"]
>> fs[Excl"TYPE_SUBST_def",GSYM TYPE_SUBST_compose,GSYM MAP_APPEND,Excl"MAP_APPEND"]
>- (
qmatch_goalsub_rename_tac `TYPE_SUBST η (TYPE_SUBST e _)`
>> qexists_tac `clean_tysubst $ MAP (TYPE_SUBST η ## I) e ++ η`
>> rw[var_renaming_compose,Excl"TYPE_SUBST_def",GSYM clean_tysubst_TYPE_SUBST_eq,TYPE_SUBST_compose]
)
>> qmatch_goalsub_rename_tac `TYPE_SUBST η (TYPE_SUBST s' _) = TYPE_SUBST _ (TYPE_SUBST e _)`
>> qexists_tac `clean_tysubst $ MAP (TYPE_SUBST η ## I) (MAP SWAP e) ++ η`
>> rw[var_renaming_compose,Excl"TYPE_SUBST_def",var_renaming_SWAP_IMP]
>> fs[Excl"TYPE_SUBST_def",GSYM clean_tysubst_TYPE_SUBST_eq,GSYM TYPE_SUBST_compose,var_renaming_SWAP_id]
QED
Theorem equal_ts_on_subset:
!s s' vars vars'. equal_ts_on s s' vars /\ set vars' ⊆ set vars
==> equal_ts_on s s' vars'
Proof
fs[equal_ts_on_def,PULL_FORALL,SUBSET_DEF]
QED
Theorem equiv_ts_on_subset:
!s s' vars vars'. equiv_ts_on s s' vars /\ set vars' ⊆ set vars
==> equiv_ts_on s s' vars'
Proof
rw[equiv_ts_on_def]
>> goal_assum dxrule
>> metis_tac[equal_ts_on_subset]
QED
Theorem equal_ts_on_FILTER:
!s s' t. is_const_or_type t ==> equal_ts_on s s' (FV t)
= equal_ts_on s (FILTER ((λx. MEM x (MAP Tyvar (FV t))) o SND) s') (FV t)
Proof
rw[equal_ts_on_FV,GSYM LR_TYPE_SUBST_wlog_eq'']
QED
Theorem equal_ts_on_FV_LR_TYPE_SUBST:
!p s s' r. is_const_or_type p ==>
equal_ts_on s s' (FV (LR_TYPE_SUBST r p)) =
equal_ts_on (MAP ((TYPE_SUBST s) ## I) r ++ s) (MAP ((TYPE_SUBST s') ## I) r ++ s') (FV p)
Proof
rpt strip_tac
>> dep_rewrite.DEP_REWRITE_TAC[equal_ts_on_FV,GSYM LR_TYPE_SUBST_compose,LR_TYPE_SUBST_type_preserving]
>> asm_rewrite_tac[]
QED
Theorem equal_ts_on_split:
!s s' vars1 vars2 vars. (set vars1 ∪ set vars2) = set vars
/\ equal_ts_on s s' vars1 /\ equal_ts_on s s' vars2
==> equal_ts_on s s' vars
Proof
fs[equal_ts_on_def,EQ_SYM_EQ,FORALL_AND_THM,DISJ_IMP_THM]
QED
Theorem equal_ts_on_complement:
!s s' vars vars'. equal_ts_on s s' (list_complement vars vars')
/\ equal_ts_on s s' (list_inter vars vars')
==> equal_ts_on s s' vars
Proof
rpt strip_tac
>> match_mp_tac equal_ts_on_split
>> goal_assum $ drule_at Any
>> goal_assum $ rev_drule_at Any
>> fs[pred_setTheory.EXTENSION,GSYM LEFT_AND_OVER_OR,
holSyntaxRenamingTheory.list_complement_MEM,holSyntaxRenamingTheory.list_inter_set]
QED
Theorem equiv_ts_on_TYPE_SUBST:
!r r' s ty. var_renaming s
/\ equiv_ts_on r (MAP (TYPE_SUBST r' ## I) s ++ r') (tyvars ty)
/\ equiv_ts_on r [] (tyvars ty)
==> equiv_ts_on r' [] (tyvars (TYPE_SUBST s ty))
Proof
rw[equiv_ts_on_tyvars,GSYM TYPE_SUBST_compose] >> gs[]
>> irule_at Any var_renaming_compose
>> fs[GSYM TYPE_SUBST_compose,GSYM clean_tysubst_TYPE_SUBST_eq]
>> CONV_TAC SWAP_EXISTS_CONV
>> qexists_tac `MAP SWAP s`
>> fs[var_renaming_SWAP_id,var_renaming_SWAP_IMP]
>> irule_at Any var_renaming_compose
>> map_every qexists_tac [`MAP SWAP e`,`e'`]
>> fs[GSYM TYPE_SUBST_compose,GSYM clean_tysubst_TYPE_SUBST_eq,var_renaming_SWAP_IMP]
>> fs[var_renaming_SWAP_id]
QED
Theorem equiv_ts_on_LR_TYPE_SUBST:
!r r' s p. is_const_or_type p /\ var_renaming s
/\ equiv_ts_on r (MAP (TYPE_SUBST r' ## I) s ++ r') (FV p)
/\ equiv_ts_on r [] (FV p)
==> equiv_ts_on r' [] (FV (LR_TYPE_SUBST s p))
Proof
dsimp[is_const_or_type_eq,FV_def,tvars_def,sum_case_def,LR_TYPE_SUBST_cases]
>> ACCEPT_TAC equiv_ts_on_TYPE_SUBST
QED
Theorem equiv_ts_on_var_renaming2:
!r s t. var_renaming s /\ is_const_or_type t
==> equiv_ts_on r s (FV t) = equiv_ts_on r [] (FV t)
Proof
rw[]
>> drule equiv_ts_on_compose
>> rw[equiv_ts_on_FV,LR_TYPE_SUBST_NIL,EQ_IMP_THM]
>> irule_at Any var_renaming_compose
>> fs[GSYM clean_tysubst_LR_TYPE_SUBST_eq,GSYM LR_TYPE_SUBST_compose]
>- (irule_at Any EQ_REFL >> asm_rewrite_tac[])
>> goal_assum drule
>> rev_drule_then (irule_at Any) var_renaming_SWAP_IMP
>> fs[var_renaming_SWAP_LR_id]
QED
Theorem equiv_ts_on_NIL_var_renaming1:
!s r t. var_renaming s /\ is_const_or_type t
==> equiv_ts_on r [] (FV $ LR_TYPE_SUBST s t)
= equiv_ts_on (MAP (TYPE_SUBST r ## I) s ++ r) [] (FV t)
Proof
rpt strip_tac
>> dep_rewrite.DEP_REWRITE_TAC[equiv_ts_on_FV_LR_TYPE_SUBST,equiv_ts_on_compose_NIL,equiv_ts_on_var_renaming2]
>> asm_rewrite_tac[]
QED
Theorem equiv_ts_on_NIL_var_renaming2 =
ONCE_REWRITE_RULE[equiv_ts_on_symm] equiv_ts_on_NIL_var_renaming1
Definition equiv_def:
equiv x y = ?s. var_renaming s /\ x = LR_TYPE_SUBST s y
End
val _ = Parse.add_infix("≈", 401, Parse.NONASSOC)
Overload "≈" = ``$equiv``
Theorem equiv_refl:
!x. is_const_or_type x ==> equiv x x
Proof
rw[equiv_def]
>> irule_at Any var_renaming_nil
>> fs[LR_TYPE_SUBST_NIL]
QED
Theorem equiv_is_const_or_type:
is_const_or_type x /\ equiv y x ==> is_const_or_type y
Proof
rw[equiv_def] >> fs[]
QED
Theorem equiv_symm_imp:
!x y. is_const_or_type y /\ equiv x y ==> equiv y x
Proof
rw[equiv_def]
>> irule_at Any $ GSYM var_renaming_SWAP_LR_id
>> fs[var_renaming_SWAP_IMP]
QED
Theorem equiv_symm:
!x y. is_const_or_type x /\ is_const_or_type y
==> equiv x y = equiv y x
Proof
dsimp[EQ_IMP_THM,equiv_symm_imp]
QED
Theorem equiv_trans:
!x y z. is_const_or_type x /\ is_const_or_type y /\ is_const_or_type z
/\ equiv x y /\ equiv y z ==> equiv x z
Proof
rw[equiv_def]
>> irule_at Any var_renaming_compose
>> fs[GSYM clean_tysubst_LR_TYPE_SUBST_eq,GSYM LR_TYPE_SUBST_compose]
>> irule_at Any EQ_REFL
>> asm_rewrite_tac[]
QED
Theorem equiv_equiv_ts_on2:
!x s. is_const_or_type x
==> equiv x (LR_TYPE_SUBST s x) = equiv_ts_on [] s (FV x)
Proof
rw[equiv_def,equiv_ts_on_FV,LR_TYPE_SUBST_NIL]
QED
Theorem equiv_equiv_ts_on:
!x s s'. is_const_or_type x
==> equiv (LR_TYPE_SUBST s x) (LR_TYPE_SUBST s' x) = equiv_ts_on s s' (FV x)
Proof
rw[equiv_def,equiv_ts_on_FV]
QED
Theorem equiv_LR_TYPE_SUBST1:
!s x y. is_const_or_type x /\ is_const_or_type y /\ var_renaming s
==> equiv (LR_TYPE_SUBST s x) y = equiv x y
Proof
rw[equiv_def,EQ_IMP_THM]
>- (
rev_drule_all var_renaming_SWAP_LR_id'
>> disch_then $ fs o single
>> irule_at Any var_renaming_compose
>> fs[GSYM clean_tysubst_LR_TYPE_SUBST_eq,GSYM LR_TYPE_SUBST_compose]
>> irule_at Any EQ_REFL
>> fs[var_renaming_SWAP_IMP]
)
>> irule_at Any var_renaming_compose
>> fs[GSYM clean_tysubst_LR_TYPE_SUBST_eq,GSYM LR_TYPE_SUBST_compose]
>> irule_at Any EQ_REFL
>> fs[]
QED
Theorem equiv_LR_TYPE_SUBST2:
!s x y. is_const_or_type x /\ is_const_or_type y /\ var_renaming s
==> equiv x (LR_TYPE_SUBST s y) = equiv x y
Proof
rw[equiv_LR_TYPE_SUBST1,Once equiv_symm] >> fs[equiv_symm]
QED
(* well-formed list of dependencies *)
Definition wf_pqs_def:
wf_pqs = EVERY (UNCURRY $/\ o (is_const_or_type ## is_const_or_type))
End
Triviality wf_pqs_APPEND:
wf_pqs (l ++ l') <=> wf_pqs l /\ wf_pqs l'
Proof
fs[wf_pqs_def]
QED
Triviality wf_pqs_CONS:
wf_pqs (h::t) <=> is_const_or_type (FST h) /\ is_const_or_type (SND h) /\ wf_pqs t
Proof
fs[wf_pqs_def,ELIM_UNCURRY,EQ_IMP_THM]
QED
Theorem wf_pqs_simp[simp]:
wf_pqs []
Proof fs[wf_pqs_def]
QED
(* Definition 5.3, Kunčar 2015
* Solution to a sequence *)
Definition sol_seq_def:
sol_seq rs pqs =
(wf_pqs pqs
/\ (LENGTH rs = LENGTH pqs
/\ !i. SUC i < LENGTH rs ==>
LR_TYPE_SUBST (EL i rs) (SND (EL i pqs))
= LR_TYPE_SUBST (EL (SUC i) rs) (FST (EL (SUC i) pqs))))
End
(* most general solution to a sequence *)
Definition mg_sol_seq_def:
mg_sol_seq rs pqs =
(sol_seq rs pqs
/\ !rs'. sol_seq rs' pqs ==>
?es. LENGTH es = LENGTH rs /\
!i. i < LENGTH rs ==>
equal_ts_on (MAP (TYPE_SUBST (EL i es) ## I) (EL i rs) ++ (EL i es)) (EL i rs') (FV (FST (EL i pqs))))
End
Theorem sol_seq_is_const_or_type:
!rs pqs i. sol_seq rs pqs /\ i < LENGTH pqs
==> is_const_or_type (FST (EL i pqs))
/\ is_const_or_type (SND (EL i pqs))
Proof
rw[sol_seq_def,wf_pqs_def,EVERY_MEM]
>> imp_res_tac EL_MEM
>> res_tac
>> fs[ELIM_UNCURRY]
QED
Theorem sol_seq_is_const_or_type_FST =
cj 1 $ REWRITE_RULE[FORALL_AND_THM,AND_IMP_INTRO] sol_seq_is_const_or_type
Theorem sol_seq_is_const_or_type_SND =
cj 2 $ REWRITE_RULE[FORALL_AND_THM,AND_IMP_INTRO] sol_seq_is_const_or_type
Theorem sol_seq_LENGTH:
sol_seq rs pqs ==> LENGTH rs = LENGTH pqs
Proof
fs[sol_seq_def]
QED
Theorem mg_sol_seq_LENGTH:
mg_sol_seq rs pqs ==> LENGTH rs = LENGTH pqs
Proof
fs[mg_sol_seq_def,sol_seq_def]
QED
Theorem sol_seq_TAKE:
!rs pqs k. sol_seq rs pqs /\
k <= LENGTH rs ==> sol_seq (TAKE k rs) (TAKE k pqs)
Proof
rw[sol_seq_def,wf_pqs_def,EVERY_MEM]
>- (
first_x_assum match_mp_tac
>> imp_res_tac MEM_TAKE
)
>> dep_rewrite.DEP_REWRITE_TAC[EL_TAKE]
>> fs[]
QED
Theorem sol_seq_DROP:
!rs pqs k. sol_seq rs pqs /\ k <= LENGTH rs
==> sol_seq (DROP k rs) (DROP k pqs)
Proof
rw[sol_seq_def,wf_pqs_def,EVERY_MEM]
>- (
first_x_assum match_mp_tac
>> imp_res_tac MEM_DROP_IMP
)
>> dep_rewrite.DEP_REWRITE_TAC[EL_DROP]
>> fs[ADD_CLAUSES]
QED
Theorem sol_seq_APPEND_imp:
!rs rs' pqs pqs'. sol_seq rs pqs /\ sol_seq rs' pqs'
/\ LR_TYPE_SUBST (LAST rs) (SND $ LAST pqs)
= LR_TYPE_SUBST (HD rs') (FST $ HD pqs')
==> sol_seq (rs++rs') (pqs++pqs')
Proof
rw[sol_seq_def,wf_pqs_APPEND] >> gs[]
>> Cases_on `SUC i < LENGTH pqs`
>- (dep_rewrite.DEP_REWRITE_TAC[EL_APPEND1] >> fs[])
>> gs[NOT_LESS,LESS_OR_EQ,EL_APPEND2,EL_APPEND1]
>- (dxrule_then assume_tac $ iffLR LESS_EQ >> fs[SUB])
>> qhdtm_x_assum `LR_TYPE_SUBST` mp_tac
>> dep_rewrite.DEP_REWRITE_TAC[LAST_EL]
>> fs[GSYM LENGTH_NOT_NULL,GSYM NULL_EQ]
QED
Theorem mg_sol_seq_is_const_or_type:
!rs pqs i. mg_sol_seq rs pqs /\ i < LENGTH pqs
==> is_const_or_type (FST (EL i pqs))
/\ is_const_or_type (SND (EL i pqs))
Proof
fs[mg_sol_seq_def]
>> rpt gen_tac
>> rpt disch_tac
>> match_mp_tac sol_seq_is_const_or_type
>> fs[]
>> goal_assum drule
QED
Theorem sol_seq_TYPE_SUBST:
!rs pqs s. sol_seq rs pqs
==> sol_seq (MAP (λx. MAP (TYPE_SUBST s ## I) x ++ s) rs) pqs
Proof
fs[sol_seq_def,wf_pqs_def,EVERY_MEM,ELIM_UNCURRY,FORALL_AND_THM,IMP_CONJ_THM]
>> rpt strip_tac
>> rfs[]
>> first_x_assum $ drule_then assume_tac
>> dep_rewrite.DEP_REWRITE_TAC[EL_MAP,GSYM LR_TYPE_SUBST_compose]
>> ntac 2 $ qpat_x_assum `!x. _` $ irule_at Any
>> fs[EL_MEM]
QED
Theorem sol_seq_var_renaming:
!rs pqs s. var_renaming s
/\ sol_seq (MAP (λx. MAP (TYPE_SUBST s ## I) x ++ s) rs) pqs
==> sol_seq rs pqs
Proof
rpt strip_tac
>> dxrule_then (qspec_then `MAP SWAP s` mp_tac) sol_seq_TYPE_SUBST
>> rw[sol_seq_def,LR_TYPE_SUBST_compose] >> gs[] >> first_x_assum drule
>> dep_rewrite.DEP_REWRITE_TAC[equal_ts_on_FV,GSYM LR_TYPE_SUBST_compose,EL_MAP,var_renaming_SWAP_LR_id]
>> fs[wf_pqs_def,EVERY_MEM,MEM_EL,PULL_EXISTS,ELIM_UNCURRY]
QED
Theorem mg_sol_seq_var_renaming:
!rs pqs s. mg_sol_seq rs pqs /\ var_renaming s
==> mg_sol_seq (MAP (λx. MAP (TYPE_SUBST s ## I) x ++ s) rs) pqs
Proof
rw[mg_sol_seq_def,sol_seq_TYPE_SUBST]
>> first_x_assum drule
>> strip_tac
>> qexists_tac `MAP (λx. MAP (TYPE_SUBST x ## I) (MAP SWAP s) ++ x) es`
>> rpt strip_tac >> fs[]
>> first_x_assum $ drule
>> dep_rewrite.DEP_REWRITE_TAC[equal_ts_on_FV,GSYM LR_TYPE_SUBST_compose,EL_MAP]
>> `LENGTH rs = LENGTH pqs` by fs[sol_seq_def]
>> conj_asm1_tac
>- (fs[] >> drule_all sol_seq_is_const_or_type >> fs[])
>> fs[]
>> disch_then $ REWRITE_TAC o single o GSYM
>> AP_TERM_TAC
>> dep_rewrite.DEP_ONCE_REWRITE_TAC[LR_TYPE_SUBST_compose]
>> conj_asm1_tac >- fs[]
>> drule LR_TYPE_SUBST_NIL
>> disch_then $ CONV_TAC o RHS_CONV o ONCE_REWRITE_CONV o single o GSYM
>> rw[LR_TYPE_SUBST_tyvars,Excl"TYPE_SUBST_def",GSYM TYPE_SUBST_compose,var_renaming_SWAP_id]
QED
Theorem mg_sol_seq_var_renaming':
!rs pqs s. mg_sol_seq (MAP (λx. MAP (TYPE_SUBST s ## I) x ++ s) rs) pqs
/\ var_renaming s
==> mg_sol_seq rs pqs
Proof
rw[]
>> drule_then assume_tac var_renaming_SWAP_IMP
>> dxrule_then (drule_then assume_tac) mg_sol_seq_var_renaming
>> rw[mg_sol_seq_def]
>- (
fs[mg_sol_seq_def]
>> qpat_x_assum `!x. _` kall_tac
>> drule_then assume_tac sol_seq_is_const_or_type
>> fs[sol_seq_def,IMP_CONJ_THM,FORALL_AND_THM]
>> rpt strip_tac
>> rfs[]
>> last_x_assum drule
>> dep_rewrite.DEP_REWRITE_TAC[equal_ts_on_FV,GSYM LR_TYPE_SUBST_compose,EL_MAP,var_renaming_SWAP_LR_id]
>> fs[]
)
>> fs[mg_sol_seq_def]
>> first_x_assum $ drule_then strip_assume_tac
>> qexists_tac `es`
>> rw[]
>> first_x_assum drule
>> dep_rewrite.DEP_REWRITE_TAC[equal_ts_on_FV,GSYM LR_TYPE_SUBST_compose,EL_MAP,var_renaming_SWAP_LR_id]
>> imp_res_tac sol_seq_LENGTH
>> drule_then assume_tac sol_seq_is_const_or_type_FST
>> fs[]
QED
Theorem mg_sol_seq_TYPE_SUBST:
!rs pqs r c. mg_sol_seq rs pqs
==> mg_sol_seq (MAP (λx. MAP (TYPE_SUBST (renn r c) ## I) x ++ (renn r c)) rs) pqs
Proof
rpt strip_tac
>> match_mp_tac mg_sol_seq_var_renaming
>> fs[renn_var_renaming]
QED
(* various monotony properties (Lemma 5.2) *)
Theorem sol_seq_FV_LR_TYPE_SUBST_SND_FST:
!pqs rs dep i.
monotone dep
/\ EVERY (UNCURRY dep) pqs
/\ sol_seq rs pqs
/\ i < LENGTH pqs ==>
set(FV (LR_TYPE_SUBST (EL i rs) (SND (EL i pqs)))) ⊆ set(FV (LR_TYPE_SUBST (EL i rs) (FST (EL i pqs))))
Proof
rw[monotone_def,PAIR_MAP,ELIM_UNCURRY,o_DEF,EVERY_MEM,list_subset_set]
>> match_mp_tac FV_LR_TYPE_SUBST_mono
>> rpt $ first_x_assum $ irule_at Any
>> imp_res_tac EL_MEM
>> fs[sol_seq_def,wf_pqs_def,EVERY_MEM,ELIM_UNCURRY]
QED
Theorem sol_seq_FV_LR_TYPE_SUBST_FST_j_SND_i:
!pqs rs dep i j.
monotone dep
/\ EVERY (UNCURRY dep) pqs
/\ sol_seq rs pqs
/\ i < j /\ j < LENGTH pqs
==> set(FV (LR_TYPE_SUBST (EL j rs) (FST (EL j pqs)))) ⊆ set(FV (LR_TYPE_SUBST (EL i rs) (SND (EL i pqs))))
Proof
ntac 4 gen_tac
>> Induct
>> rw[]
>> fs[RIGHT_CONV_RULE (ONCE_DEPTH_CONV SYM_CONV) (SPEC_ALL sol_seq_def),EVERY_MEM,monotone_def,ELIM_UNCURRY,list_subset_set,wf_pqs_def]
>> qpat_x_assum `_ < SUC _` mp_tac
>> rw[GSYM LESS_EQ_IFF_LESS_SUC,LESS_OR_EQ] >> fs[]
>> match_mp_tac SUBSET_TRANS
>> goal_assum $ drule_at Any
>> match_mp_tac FV_LR_TYPE_SUBST_mono
>> rpt $ first_x_assum $ irule_at Any
>> conj_asm1_tac >- fs[EL_MEM]
>> fs[]
QED
Theorem sol_seq_FV_LR_TYPE_SUBST_LR_TYPE_SUBST_FST_j_SND_i:
!pqs rs dep i j s.
monotone dep
/\ EVERY (UNCURRY dep) pqs
/\ sol_seq rs pqs
/\ i < j /\ j < LENGTH pqs
==>
set (FV (LR_TYPE_SUBST s (LR_TYPE_SUBST (EL j rs) (FST (EL j pqs)))))
⊆ set (FV (LR_TYPE_SUBST s (LR_TYPE_SUBST (EL i rs) (SND (EL i pqs)))))
Proof
rw[]
>> match_mp_tac FV_LR_TYPE_SUBST_mono
>> irule_at Any sol_seq_FV_LR_TYPE_SUBST_FST_j_SND_i
>> rpt $ irule_at Any LR_TYPE_SUBST_type_preserving
>> drule_then assume_tac sol_seq_is_const_or_type
>> fs[]
>> rpt $ goal_assum drule
QED
Theorem sol_seq_FV_LR_TYPE_SUBST_FST_j_FST_i:
!pqs rs dep i j.
monotone dep
/\ EVERY (UNCURRY dep) pqs
/\ sol_seq rs pqs
/\ i <= j /\ j < LENGTH pqs
==>
set(FV (LR_TYPE_SUBST (EL j rs) (FST (EL j pqs))))
⊆ set(FV (LR_TYPE_SUBST (EL i rs) (FST (EL i pqs))))
Proof
rw[LESS_OR_EQ] >> fs[SUBSET_REFL]
>> match_mp_tac SUBSET_TRANS
>> irule_at Any sol_seq_FV_LR_TYPE_SUBST_FST_j_SND_i
>> irule_at Any sol_seq_FV_LR_TYPE_SUBST_SND_FST
>> fs[]
>> rpt $ goal_assum $ drule_at Any
QED
Theorem sol_seq_FV_LR_TYPE_SUBST_LR_TYPE_SUBST_FST_j_FST_i:
!pqs rs dep i j s.
monotone dep
/\ EVERY (UNCURRY dep) pqs
/\ sol_seq rs pqs
/\ i <= j /\ j < LENGTH pqs
==>
set (FV (LR_TYPE_SUBST s (LR_TYPE_SUBST (EL j rs) (FST (EL j pqs)))))
⊆ set (FV (LR_TYPE_SUBST s (LR_TYPE_SUBST (EL i rs) (FST (EL i pqs)))))
Proof
rw[]
>> match_mp_tac FV_LR_TYPE_SUBST_mono
>> irule_at Any sol_seq_FV_LR_TYPE_SUBST_FST_j_FST_i
>> drule_then assume_tac sol_seq_is_const_or_type
>> fs[]
>> rpt $ goal_assum $ drule_at Any
QED
Theorem sol_seq_FV_LR_TYPE_SUBST_SND_j_SND_i:
!pqs rs dep i j.
monotone dep
/\ EVERY (UNCURRY dep) pqs
/\ sol_seq rs pqs
/\ i <= j /\ j < LENGTH pqs
==>
set(FV (LR_TYPE_SUBST (EL j rs) (SND (EL j pqs))))
⊆ set(FV (LR_TYPE_SUBST (EL i rs) (SND (EL i pqs))))
Proof
rw[LESS_OR_EQ]
>> fs[SUBSET_REFL]
>> match_mp_tac SUBSET_TRANS
>> irule_at Any sol_seq_FV_LR_TYPE_SUBST_FST_j_SND_i
>> irule_at Any sol_seq_FV_LR_TYPE_SUBST_SND_FST
>> fs[]
>> rpt $ goal_assum drule
QED
Theorem sol_seq_FV_LR_TYPE_SUBST_LR_TYPE_SUBST_SND_j_SND_i:
!pqs rs dep i j s.
monotone dep
/\ EVERY (UNCURRY dep) pqs
/\ sol_seq rs pqs
/\ i <= j /\ j < LENGTH pqs
==>
set (FV (LR_TYPE_SUBST s (LR_TYPE_SUBST (EL j rs) (SND (EL j pqs)))))
⊆ set (FV (LR_TYPE_SUBST s (LR_TYPE_SUBST (EL i rs) (SND (EL i pqs)))))
Proof
rw[LESS_OR_EQ]
>> fs[SUBSET_REFL]
>> match_mp_tac FV_LR_TYPE_SUBST_mono
>> irule_at Any sol_seq_FV_LR_TYPE_SUBST_SND_j_SND_i
>> drule_then assume_tac sol_seq_is_const_or_type
>> fs[]
>> rpt $ goal_assum $ drule_at Any
QED
Theorem sol_seq_FV_LR_TYPE_SUBST_SND_j_FST_i:
!pqs rs dep i j.
monotone dep
/\ EVERY (UNCURRY dep) pqs
/\ sol_seq rs pqs
/\ i <= j /\ j < LENGTH pqs
==>
set(FV (LR_TYPE_SUBST (EL j rs) (SND (EL j pqs))))
⊆ set(FV (LR_TYPE_SUBST (EL i rs) (FST (EL i pqs))))
Proof
rw[]
>> match_mp_tac SUBSET_TRANS
>> irule_at Any sol_seq_FV_LR_TYPE_SUBST_SND_j_SND_i
>> irule_at Any sol_seq_FV_LR_TYPE_SUBST_SND_FST
>> fs[]
>> rpt $ goal_assum $ drule_at Any
QED
Theorem sol_seq_FV_LR_TYPE_SUBST_LR_TYPE_SUBST_SND_j_FST_i:
!pqs rs dep i j s.
monotone dep
/\ EVERY (UNCURRY dep) pqs
/\ sol_seq rs pqs
/\ i <= j /\ j < LENGTH pqs
==>
set (FV (LR_TYPE_SUBST s (LR_TYPE_SUBST (EL j rs) (SND (EL j pqs)))))
⊆ set (FV (LR_TYPE_SUBST s (LR_TYPE_SUBST (EL i rs) (FST (EL i pqs)))))
Proof
rw[]
>> match_mp_tac FV_LR_TYPE_SUBST_mono
>> irule_at Any sol_seq_FV_LR_TYPE_SUBST_SND_j_FST_i
>> drule_then assume_tac sol_seq_is_const_or_type
>> fs[]
>> rpt $ goal_assum $ drule_at Any
QED
(* properties of bijections (which wlog are var_renamings) *)
Theorem bij_ALL_DISTINCT_FST:
!e e' t t'.
EVERY ((λx. MEM x (MAP Tyvar (tyvars t))) o SND) e
/\ TYPE_SUBST e' t' = t
/\ TYPE_SUBST (clean_tysubst e) t = t'
==> ALL_DISTINCT (MAP FST (clean_tysubst e))
Proof
rw[]
>> pop_assum mp_tac
>> fs[TYPE_SUBST_compose]
>> CONV_TAC (LAND_CONV (RAND_CONV (ONCE_REWRITE_CONV [GSYM TYPE_SUBST_NIL])))
>> rw[TYPE_SUBST_tyvars,REV_ASSOCD_def,Once EQ_SYM_EQ,EL_ALL_DISTINCT_EL_EQ,EQ_IMP_THM,EL_MAP]
>> imp_res_tac EL_MEM
>> imp_res_tac (REWRITE_RULE[EVERY_MEM] clean_tysubst_SND_Tyvar)
>> fs[ELIM_UNCURRY,GSYM EVERY_MAP_o,EVERY_MEM]
>> imp_res_tac (Q.ISPEC `SND` MEM_MAP_f)
>> rpt (dxrule_then assume_tac (REWRITE_RULE[SUBSET_DEF] (CONJUNCT2 clean_tysubst_FST_SND_SUBSET)))
>> last_assum (dxrule_then assume_tac)
>> last_x_assum (dxrule_then assume_tac)
>> gvs[MEM_Tyvar_MAP_Tyvar]
>> last_assum (dxrule_then assume_tac)
>> last_x_assum (dxrule_then assume_tac)
>> qspec_then `e` assume_tac (REWRITE_RULE[Once (GSYM FST_SWAP_SND),GSYM MAP_MAP_o] clean_tysubst_ALL_DISTINCT_MAP_SND)
>> dxrule_then assume_tac ALOOKUP_ALL_DISTINCT_MEM
>> fs[REV_ASSOCD_ALOOKUP,ALOOKUP_APPEND,MEM_MAP_SWAP',SWAP_def]
>> ntac 2 (qpat_x_assum `MEM (EL _ _) _` (assume_tac o ONCE_REWRITE_RULE[GSYM PAIR]))
>> qpat_assum `!x. _` (dxrule_then assume_tac)
>> qpat_x_assum `!x. _` (dxrule_then assume_tac)
>> fs[GSYM SWAP_eq,o_DEF,SWAP_def,LAMBDA_PROD,ALOOKUP_MAP,
Q.prove(`!f s. MAP SWAP (MAP f s) = MAP (SWAP o f o SWAP) (MAP SWAP s)`,
fs[MAP_MAP_o,SWAP_eq,o_DEF,ELIM_UNCURRY])
]
>> gvs[]
>> qspec_then `e` mp_tac clean_tysubst_ALL_DISTINCT_MAP_SND
>> disch_then (rw o single o GSYM o REWRITE_RULE[EL_ALL_DISTINCT_EL_EQ])
>> fs[EL_MAP]
QED
Theorem bij_props:
!t' t e e'.
TYPE_SUBST e t = t' /\ TYPE_SUBST e' t' = t
==>
ALL_DISTINCT (MAP FST (FILTER ((λx. MEM x (MAP Tyvar (tyvars t))) o SND) (clean_tysubst e)))
Proof
rpt strip_tac
>> REWRITE_TAC[GSYM clean_tysubst_FILTER_SND]
>> match_mp_tac bij_ALL_DISTINCT_FST
>> goal_assum $ drule_at Any
>> fs[EVERY_FILTER,GSYM clean_tysubst_TYPE_SUBST_eq,o_DEF,GSYM TYPE_SUBST_FILTER_SND_tyvars2]
QED
Theorem bij_props_inj1:
!t' t e e'.
TYPE_SUBST e' t' = t /\ TYPE_SUBST e t = t'
==> !a. MEM a (tyvars t') ==> TYPE_SUBST e (TYPE_SUBST e' (Tyvar a)) = Tyvar a
Proof
rpt strip_tac
>> qmatch_goalsub_rename_tac `TYPE_SUBST e (TYPE_SUBST e' _)`
>> qpat_x_assum `TYPE_SUBST e _ = _` mp_tac
>> qpat_x_assum `TYPE_SUBST _ _ = _` $ ONCE_REWRITE_TAC o single o GSYM
>> CONV_TAC $ LAND_CONV $ RAND_CONV $ ONCE_REWRITE_CONV $ single $ GSYM TYPE_SUBST_NIL
>> REWRITE_TAC[TYPE_SUBST_compose,TYPE_SUBST_tyvars]