-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathholSyntaxExtraScript.sml
15310 lines (14558 loc) · 481 KB
/
holSyntaxExtraScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
Some lemmas about the syntactic functions.
*)
open preamble totoTheory comparisonTheory ternaryComparisonsTheory mlstringTheory
holSyntaxLibTheory holSyntaxTheory
val _ = new_theory"holSyntaxExtra"
val _ = temp_delsimps ["NORMEQ_CONV"]
val _ = temp_delsimps ["lift_disj_eq", "lift_imp_disj"]
val _ = diminish_srw_ss ["ABBREV"]
val _ = set_trace "BasicProvers.var_eq_old" 1
Overload "is_instance" = ``λty0 ty. ∃i. ty = TYPE_SUBST i ty0``
val _ = Parse.add_infix("#", 401, Parse.NONASSOC)
Overload "#" = ``$orth_ty``
Overload "#" = ``$orth_ci``
val cpn_distinct = TypeBase.distinct_of ``:ordering``
val cpn_nchotomy = TypeBase.nchotomy_of ``:ordering``
(* list properties *)
Theorem FST_SND_SWAP:
FST o SWAP = SND
/\ SND o SWAP = FST
Proof
rw[FUN_EQ_THM,SWAP_def]
QED
Theorem ALL_DISTINCT_FST_MEMs:
!x v w s. ALL_DISTINCT (MAP FST s)
/\ MEM (x,v) s /\ MEM (x,w) s
==> v = w
Proof
rw[]
>> qpat_x_assum `MEM _ s` (assume_tac o REWRITE_RULE[MEM_SPLIT])
>> fs[]
>> `~MEM x (MAP FST l1) /\ ~MEM x (MAP FST l2)` by (
imp_res_tac (Q.ISPEC `FST` MEM_MAP_f)
>> fs[ALL_DISTINCT_APPEND]
)
>> `~MEM (x,v) l1 /\ ~MEM (x,v) l2` by (
CCONTR_TAC
>> fs[]
>> imp_res_tac (Q.ISPEC `FST` MEM_MAP_f)
>> fs[]
)
>> fs[]
QED
Theorem ALL_DISTINCT_SND_MEMs:
!x v w s. ALL_DISTINCT (MAP SND s)
/\ MEM (v,x) s /\ MEM (w,x) s
==> v = w
Proof
ONCE_REWRITE_TAC[GSYM FST_SND_SWAP]
>> rw[GSYM MAP_MAP_o]
>> imp_res_tac (Q.ISPEC `SWAP` MEM_MAP_f)
>> fs[SWAP_def]
>> match_mp_tac ALL_DISTINCT_FST_MEMs
>> goal_assum (first_assum o mp_then Any mp_tac)
>> fs[]
QED
(* contraposition of an equivalence *)
fun ccontr_equiv(x) =
let val (a,b) = EQ_IMP_RULE (SPEC_ALL x)
in GEN_ALL (IMP_ANTISYM_RULE (CONTRAPOS b) (CONTRAPOS a)) end
Theorem type_ind =
TypeBase.induction_of``:holSyntax$type``
|> Q.SPECL[`P`,`EVERY P`]
|> SIMP_RULE std_ss [EVERY_DEF]
|> UNDISCH_ALL
|> CONJUNCT1
|> DISCH_ALL
|> Q.GEN`P`
Theorem type1_size_append:
∀l1 l2. type1_size (l1 ++ l2) = type1_size l1 + type1_size l2
Proof
Induct >> simp[type_size_def]
QED
Theorem type1_size_mem:
∀ty tys. MEM ty tys ==> type_size ty < type1_size tys
Proof
CONV_TAC SWAP_FORALL_CONV >> Induct
>> simp[type_size_def]
>> rw[type_size_def]
>- simp[]
>> first_x_assum drule
>> simp[]
QED
val [MEM_tyvars_type_size,MEM_tyvars_type1_size] = Q.prove(
`(!ty m. MEM m (tyvars ty) ==> type_size(Tyvar m) <= type_size ty) /\
(!tyl ty m. MEM m (tyvars ty) /\ MEM ty tyl ==> type_size(Tyvar m) <= type1_size tyl)
`,
ho_match_mp_tac (type_induction)
\\ rw[tyvars_def,type_size_def]
\\ fs[MEM_FOLDR_LIST_UNION]
>- (first_x_assum drule \\ rpt(disch_then drule) \\ simp[])
>- (last_x_assum drule \\ simp[])
>- (last_x_assum drule \\ simp[]))
|> CONJUNCTS
|> map2 (curry save_thm) ["MEM_tyvars_type_size","MEM_tyvars_type1_size"]
(* type_size but disregarding the lengths of strings *)
Definition type_size'_def:
(type_size' (Tyvar a) = SUC 0)
∧ (type_size' (Tyapp a0 a1) = 1 + type1_size' a1)
∧ (type1_size' [] = 0)
∧ (type1_size' (a0::a1) = 1 + (type_size' a0 + type1_size' a1))
End
Theorem type1_size'_append:
∀l1 l2. type1_size' (l1 ++ l2) = type1_size' l1 + type1_size' l2
Proof
Induct >> simp[type_size'_def]
QED
Theorem type1_size'_mem:
∀ty tys. MEM ty tys ==> type_size' ty < type1_size' tys + 1
Proof
CONV_TAC SWAP_FORALL_CONV
>> Induct
>> simp[fetch "-" "type_size'_def"]
>> rw[fetch "-" "type_size'_def"]
>- simp[]
>> first_x_assum drule
>> simp[]
QED
Theorem type1_size'_SUM_MAP:
∀l. type1_size' l = LENGTH l + SUM (MAP $type_size' l)
Proof
Induct >> simp[type_size'_def]
QED
Theorem extends_ind:
∀P. (∀upd ctxt. upd updates ctxt ∧ P ctxt ⇒ P (upd::ctxt)) ⇒
∀ctxt1 ctxt2. ctxt2 extends ctxt1 ⇒ P ctxt1 ⇒ P ctxt2
Proof
gen_tac >> strip_tac >>
simp[extends_def] >>
CONV_TAC SWAP_FORALL_CONV >>
ho_match_mp_tac RTC_INDUCT >>
rw[] >> first_x_assum match_mp_tac >>
rw[]
QED
(* deconstructing variables *)
Theorem ALOOKUP_MAP_dest_var:
∀ls f x ty.
EVERY (λs. ∃x ty. s = Var x ty) (MAP FST ls) ⇒
ALOOKUP (MAP (dest_var ## f) ls) (x,ty) =
OPTION_MAP f (ALOOKUP ls (Var x ty))
Proof
Induct >> simp[] >> Cases >> simp[EVERY_MEM,EVERY_MAP] >>
rw[] >> fs[]
QED
(* type substitution *)
Theorem REV_ASSOCD_drop:
!l1. x <> b ==> REV_ASSOCD x (l1 ++ (a,b)::l2) y = REV_ASSOCD x (l1 ++ l2) y
Proof
Induct >- rw[REV_ASSOCD]
\\ Cases \\rw[REV_ASSOCD]
QED
Theorem REV_ASSOCD_drop_prefix:
!pfx x s d. ~MEM x (MAP SND pfx) ⇒ REV_ASSOCD x (pfx ++ s) d = REV_ASSOCD x s d
Proof
Induct >> rw[REV_ASSOCD_def]
QED
Theorem REV_ASSOCD_NOT_MEM_drop:
!s x. ~MEM x (MAP SND s) ==> REV_ASSOCD x s x = x
Proof
Induct >> rw[REV_ASSOCD_def]
QED
Theorem REV_ASSOCD_self_append:
!l. REV_ASSOCD x (MAP (f ## I) l ++ l) y = REV_ASSOCD x (MAP (f ## I) l) y
Proof
Induct >- rw[REV_ASSOCD]
\\ Cases \\ rw[REV_ASSOCD,REV_ASSOCD_drop]
QED
Theorem TYPE_SUBST_NIL:
∀ty. TYPE_SUBST [] ty = ty
Proof
ho_match_mp_tac type_ind >>
rw[REV_ASSOCD,MAP_EQ_ID] >>
fs[EVERY_MEM]
QED
val _ = export_rewrites["TYPE_SUBST_NIL"]
Theorem TYPE_SUBST_Bool:
∀tyin. TYPE_SUBST tyin Bool = Bool
Proof
rw[TYPE_SUBST_def]
QED
Theorem is_instance_refl:
∀ty. is_instance ty ty
Proof
rw[] >> qexists_tac`[]` >> rw[]
QED
val _ = export_rewrites["is_instance_refl"]
Theorem is_instance_simps:
(!t i. is_instance t (TYPE_SUBST i t))
/\ (!t a. is_instance (Tyvar a) t)
Proof
rw[] >- (qexists_tac `i` >> fs[])
>> qexists_tac `[(t,Tyvar a)]` >> fs[REV_ASSOCD_def]
QED
Theorem swap_ff:
∀f g. (λ(x,y). (y,x)) o (f ## g) = (g ## f) o (λ(x,y). (y,x))
Proof
rw[FUN_EQ_THM,FORALL_PROD]
QED
Theorem ff_def:
∀f g. (f ## g) = λ(x,y). (f x, g y)
Proof
rw[FUN_EQ_THM,FORALL_PROD,PAIR_MAP_THM]
QED
Theorem TYPE_SUBST_compose:
∀tyin1 ty tyin2.
TYPE_SUBST tyin2 (TYPE_SUBST tyin1 ty) =
TYPE_SUBST ((MAP (TYPE_SUBST tyin2 ## I) tyin1) ++ tyin2) ty
Proof
ho_match_mp_tac TYPE_SUBST_ind >>
rw[TYPE_SUBST_def,MAP_MAP_o,combinTheory.o_DEF,MAP_EQ_f] >>
rw[REV_ASSOCD_ALOOKUP,ALOOKUP_APPEND] >>
simp[MAP_MAP_o,swap_ff] >> simp[GSYM MAP_MAP_o] >>
simp[ff_def,ALOOKUP_MAP] >>
BasicProvers.CASE_TAC >> simp[TYPE_SUBST_def,REV_ASSOCD_ALOOKUP]
QED
Theorem TYPE_SUBST_tyvars:
∀ty tyin tyin'.
(TYPE_SUBST tyin ty = TYPE_SUBST tyin' ty) ⇔
∀x. MEM x (tyvars ty) ⇒
REV_ASSOCD (Tyvar x) tyin' (Tyvar x) =
REV_ASSOCD (Tyvar x) tyin (Tyvar x)
Proof
ho_match_mp_tac type_ind >>
simp[tyvars_def] >>
conj_tac >- metis_tac[] >>
Induct >> simp[] >>
gen_tac >> strip_tac >> fs[] >>
rpt gen_tac >> EQ_TAC >> strip_tac >> fs[] >>
fs[MEM_LIST_UNION] >> metis_tac[]
QED
Theorem TYPE_SUBST_Tyapp_ident:
!tys s a. (TYPE_SUBST s (Tyapp a tys) = (Tyapp a tys))
==> !ty. MEM ty tys ==> TYPE_SUBST s ty = ty
Proof
rw[MEM_SPLIT] >> fs[ELIM_UNCURRY,APPEND_LENGTH_EQ]
QED
Theorem TYPE_SUBST_eq_id:
!ty s. TYPE_SUBST s ty = ty
<=> !x. MEM x (tyvars ty) ==> TYPE_SUBST s (Tyvar x) = Tyvar x
Proof
rpt gen_tac
>> CONV_TAC $ LAND_CONV $ RAND_CONV $ REWR_CONV $ GSYM TYPE_SUBST_NIL
>> fs[TYPE_SUBST_tyvars,Excl"TYPE_SUBST_def",GSYM TYPE_SUBST_def,EQ_SYM_EQ]
QED
Theorem TYPE_SUBST_reduce:
!l1 l2 ty x ts. ~MEM x (tyvars ty)
==> TYPE_SUBST (l1 ++ (ts,Tyvar x)::l2) ty = TYPE_SUBST (l1 ++ l2) ty
Proof
Induct
>> rw[TYPE_SUBST_tyvars,REV_ASSOCD_def]
>> Cases_on `x=x'`
>> fs[]
>> FULL_CASE_TAC
>> first_x_assum drule
>> fs[TYPE_SUBST_tyvars]
QED
Theorem TYPE_SUBST_reduce_CONS:
!l2 ty x ts. ~MEM x (tyvars ty)
==> TYPE_SUBST ((ts,Tyvar x)::l2) ty = TYPE_SUBST (l2) ty
Proof
rpt strip_tac >> drule TYPE_SUBST_reduce \\ disch_then (qspec_then `[]` mp_tac) \\ simp[]
QED
Theorem TYPE_SUBST_reduce_list:
!l1 l2 ty . (!a. MEM a (tyvars ty) ==> !ty. ~MEM (ty,Tyvar a) l1)
==> TYPE_SUBST (l1 ++ l2) ty = TYPE_SUBST l2 ty
Proof
Induct
>> rw[TYPE_SUBST_tyvars,REV_ASSOCD_def]
>> FULL_CASE_TAC
>- (first_x_assum drule >> disch_then (qspec_then `FST h` mp_tac) >> rw[] >> Cases_on `h` >> fs[])
>> first_x_assum (qspecl_then [`l2`,`ty`] mp_tac)
>> rw[TYPE_SUBST_tyvars,REV_ASSOCD_def]
QED
(* TODO remove TYPE_SUBST_reduce_list in favour of this more elegant version *)
Theorem TYPE_SUBST_reduce_list2:
!l1 l2 ty . EVERY (λa. ~MEM (Tyvar a) (MAP SND l1)) (tyvars ty)
==> TYPE_SUBST (l1 ++ l2) ty = TYPE_SUBST l2 ty
Proof
Induct
>> rw[TYPE_SUBST_tyvars,REV_ASSOCD_def]
>> FULL_CASE_TAC
>- (
fs[EVERY_MEM,REV_ASSOCD_def]
>> first_x_assum drule
>> fs[]
)
>> first_x_assum (qspecl_then [`l2`,`ty`] mp_tac)
>> fs[EVERY_MEM,TYPE_SUBST_tyvars,REV_ASSOCD_def]
QED
Theorem TYPE_SUBST_eating:
!s ty a. TYPE_SUBST s ty = TYPE_SUBST s (Tyvar a)
==> TYPE_SUBST s o TYPE_SUBST [(ty,Tyvar a)] = TYPE_SUBST s
Proof
rw[FUN_EQ_THM,TYPE_SUBST_compose,TYPE_SUBST_tyvars]
>> Cases_on `MEM (Tyvar x') (MAP SND s)`
>- (
pop_assum (mp_tac o CONV_RULE(PURE_ONCE_REWRITE_CONV [MEM_SPLIT_APPEND_first]))
>> rw[]
>> Cases_on `a=x'`
>> rw[REV_ASSOCD_def]
)
>> Cases_on `a=x'`
>> rw[REV_ASSOCD_def]
QED
Theorem TYPE_SUBST_MEM:
!s a b. EVERY (λ(y,x). (?a. Tyvar a = x /\ x <> y)) s
/\ ALL_DISTINCT (MAP SND s)
/\ MEM (b,a) s ==> TYPE_SUBST s a = b
Proof
rw[MEM_SPLIT]
>> fs[MAP_APPEND,ALL_DISTINCT_APPEND]
>> `!ty. ~MEM (ty,a) l1` by (
rveq
>> fs[MEM_MAP]
>> rw[]
>> qpat_x_assum `!x. _ \/ _` (qspec_then `(ty,Tyvar a')` mp_tac)
>> rw[]
)
>> mp_tac (Q.SPECL [`l1`,`[(b,a)]++l2`,`a`] TYPE_SUBST_reduce_list)
>> rveq
>> rw[tyvars_def,REV_ASSOCD_def]
QED
Theorem TYPE_SUBST_NOT_MEM:
!s a. EVERY (λ(y,x). (?a. Tyvar a = x /\ x <> y)) s
/\ ALL_DISTINCT (MAP SND s)
/\ ~(?b. MEM (b,Tyvar a) s) ==> TYPE_SUBST s (Tyvar a) = (Tyvar a)
Proof
rw[]
>> assume_tac (Q.SPECL [`s`,`[]`,`Tyvar a`] TYPE_SUBST_reduce_list)
>> fs[tyvars_def]
QED
Theorem TYPE_SUBST_duplicates:
!s a t t'. TYPE_SUBST ((t,Tyvar a)::(t',Tyvar a)::s) = TYPE_SUBST ((t,Tyvar a)::s)
Proof
rw[FUN_EQ_THM,TYPE_SUBST_tyvars]
>> Cases_on `x'=a`
>> fs[REV_ASSOCD_def]
QED
Theorem TYPE_SUBST_drop_prefix:
!l pfx a. ~MEM (Tyvar a) (MAP SND pfx) ==> TYPE_SUBST (pfx++l) (Tyvar a) = TYPE_SUBST l (Tyvar a)
Proof
gen_tac >> Induct >> rw[TYPE_SUBST_def,REV_ASSOCD_drop_prefix]
QED
Theorem TYPE_SUBST_drop_all:
!pfx a. ~MEM (Tyvar a) (MAP SND pfx) ==> TYPE_SUBST pfx (Tyvar a) = (Tyvar a)
Proof
rw[]
>> dxrule TYPE_SUBST_drop_prefix
>> disch_then (qspec_then `[]` assume_tac)
>> fs[]
QED
Theorem TYPE_SUBST_drop_prefix_MAP:
!l pfx a f. ~MEM (Tyvar a) (MAP SND pfx) ==> TYPE_SUBST (MAP (f ## I )pfx++l) (Tyvar a) = TYPE_SUBST l (Tyvar a)
Proof
Induct_on `pfx`
>> rw[REV_ASSOCD_drop]
>> Cases_on `h`
>> fs[REV_ASSOCD_def]
QED
Theorem TYPE_SUBST_MEM':
!s a b. ALL_DISTINCT (MAP SND s) /\ MEM (b,Tyvar a) s ==> TYPE_SUBST s (Tyvar a) = b
Proof
rw[MEM_SPLIT]
>> fs[MAP_APPEND,ALL_DISTINCT_APPEND]
>> imp_res_tac TYPE_SUBST_drop_prefix
>> pop_assum (qspec_then `[(b,Tyvar a)]++l2` assume_tac)
>> fs[REV_ASSOCD_def]
QED
Theorem ZIP_ident:
!a b c d. LENGTH a = LENGTH c /\ LENGTH b = LENGTH d /\
LENGTH a = LENGTH b ==> ((ZIP (a,b) = ZIP (c,d)) <=> (a = c /\ b = d))
Proof
Induct >- fs[]
>> strip_tac
>> rpt Cases >> fs[]
>> first_x_assum (qspecl_then [`t`,`t'`,`t''`] assume_tac)
>> rw[] >> fs[AC CONJ_ASSOC CONJ_COMM]
QED
Theorem MEM_SPLIT_APPEND_SND_first:
!s x. MEM x (MAP SND s) ==> ?pfx sfx q. s = pfx ++ [(q,x)] ++ sfx /\ ~MEM x (MAP SND pfx)
Proof
rpt strip_tac
>> pop_assum (assume_tac o PURE_ONCE_REWRITE_RULE [MEM_SPLIT_APPEND_first])
>> fs[]
>> `LENGTH (MAP SND s) = LENGTH pfx + 1 + LENGTH sfx` by (ASM_REWRITE_TAC[LENGTH_APPEND] >> fs[])
>> ONCE_REWRITE_TAC[GSYM ZIP_MAP_FST_SND_EQ]
>> fs[MAP_APPEND]
>> qexists_tac `TAKE (LENGTH pfx) s`
>> qexists_tac `DROP (SUC (LENGTH pfx)) s`
>> qexists_tac `FST (EL (LENGTH pfx) s)`
>> qmatch_goalsub_abbrev_tac `ZIP (a,b) = ZIP(c,d)`
>> (Q.ISPECL_THEN [`a`,`b`,`c`,`d`] assume_tac) ZIP_ident
>> unabbrev_all_tac
>> fs[LENGTH_MAP]
>> rpt strip_tac
>- (
NTAC 2 (pop_assum kall_tac)
>> rpt (pop_assum mp_tac)
>> MAP_EVERY (W(curry Q.SPEC_TAC)) [`sfx`,`x`,`pfx`,`s`]
>> Induct >- fs[]
>> rw[]
>> Cases_on `pfx`
>> fs[]
)
>- (
NTAC 2 (pop_assum kall_tac)
>> rpt (pop_assum mp_tac)
>> MAP_EVERY (W(curry Q.SPEC_TAC)) [`sfx`,`x`,`pfx`,`s`]
>> Induct >- fs[]
>> rw[]
>> Cases_on `pfx`
>> fs[]
)
>> pop_assum mp_tac
>> rw[ZIP_MAP_FST_SND_EQ,MAP_TAKE]
>> ONCE_REWRITE_TAC[GSYM APPEND_ASSOC]
>> rw[TAKE_LENGTH_APPEND]
QED
Theorem TYPE_SUBST_MEM_MAP_SND:
!s a. MEM (Tyvar a) (MAP SND s)
==> ?b. TYPE_SUBST s (Tyvar a) = b /\ MEM (b,Tyvar a) s
Proof
rw[]
>> imp_res_tac MEM_SPLIT_APPEND_SND_first
>> imp_res_tac TYPE_SUBST_drop_prefix
>> first_x_assum (qspec_then `[(q,Tyvar a)]++sfx` assume_tac)
>> fs[REV_ASSOCD_def]
QED
Theorem type_size_TYPE_SUBST:
!t s. type_size' t <= type_size' (TYPE_SUBST s t)
Proof
ho_match_mp_tac type_ind
>> conj_tac
>- (
rw[type_size'_def]
>> Cases_on `MEM (Tyvar m) (MAP SND s)`
>- (
dxrule_then strip_assume_tac TYPE_SUBST_MEM_MAP_SND
>> Cases_on `b`
>> fs[type_size'_def]
)
>> fs[REV_ASSOCD_NOT_MEM_drop,type_size'_def]
)
>> fs[type_size'_def]
>> Induct
>- fs[type_size'_def]
>> rw[type_size'_def]
>> fs[]
>> rpt(first_x_assum (qspec_then `s` assume_tac))
>> rw[ADD_MONO_LESS_EQ]
QED
Theorem type_size_TYPE_SUBST':
!s l1. SUM (MAP type_size' l1) <= SUM (MAP type_size' (MAP (λa. TYPE_SUBST s a) l1))
Proof
rw[]
>> qspec_then `Tyapp m l1` mp_tac type_size_TYPE_SUBST
>> fs[type_size'_def,type1_size'_SUM_MAP]
QED
Theorem TYPE_SUBST_drop_suffix:
!s a. MEM (Tyvar a) (MAP SND s)
==> !s'. TYPE_SUBST (s++s') (Tyvar a) = TYPE_SUBST s (Tyvar a)
Proof
rpt strip_tac
>> imp_res_tac MEM_SPLIT_APPEND_SND_first
>> imp_res_tac TYPE_SUBST_drop_prefix
>> first_assum (qspec_then `[(q,Tyvar a)]++sfx++s'` assume_tac)
>> first_x_assum (qspec_then `[(q,Tyvar a)]++sfx` assume_tac)
>> fs[REV_ASSOCD_def]
QED
Theorem TYPE_SUBST_EL:
!l i n. n < LENGTH l ==> TYPE_SUBST i (EL n l) = EL n (MAP (λa. TYPE_SUBST i a) l)
Proof
Induct
>> fs[]
>> rpt strip_tac
>> Cases_on `n = 0`
>> fs[NOT_ZERO_LT_ZERO]
>> `?m. n = SUC m` by (qexists_tac `PRE n` >> fs[])
>> fs[EL]
QED
(* Welltyped terms *)
Theorem WELLTYPED_LEMMA:
∀tm ty. tm has_type ty ⇒ (typeof tm = ty)
Proof
ho_match_mp_tac has_type_ind >>
simp[typeof_def,has_type_rules,codomain_def]
QED
Theorem WELLTYPED:
∀tm. welltyped tm ⇔ tm has_type (typeof tm)
Proof
simp[welltyped_def] >> metis_tac[WELLTYPED_LEMMA]
QED
Theorem WELLTYPED_CLAUSES:
(!n ty. welltyped(Var n ty)) /\
(!n ty. welltyped(Const n ty)) /\
(!s t. welltyped (Comb s t) <=>
welltyped s /\ welltyped t /\
?rty. typeof s = Fun (typeof t) rty) /\
(!v t. welltyped (Abs v t) = ∃n ty. v = Var n ty ∧ welltyped t)
Proof
REPEAT STRIP_TAC THEN REWRITE_TAC[welltyped_def] THEN
rw[Once has_type_cases] >>
metis_tac[WELLTYPED,WELLTYPED_LEMMA]
QED
val _ = export_rewrites["WELLTYPED_CLAUSES"]
(* wellformed_compute actually also checks the syntax (through the has_type relation) *)
Theorem WELLFORMED_COMPUTE_EQUIV:
!t. welltyped t = wellformed_compute t
Proof
Induct
>> rw[welltyped_def,wellformed_compute_def]
>> fs[welltyped_def]
>> Cases_on `typeof t`
>> rw[is_fun_def,domain_raw]
>> rw[EQ_IMP_THM] >> rw[]
>> simpLib.global_simp_tac
{elimvars = true, strip = true, droptrues = true, oldestfirst=true}
bool_ss
[LENGTH_NIL,LENGTH_CONS,ONE,TWO,HD]
>> rw[]
>> fs[wellformed_compute_def]
>> Cases_on ‘t’
>> fs[wellformed_compute_def]
QED
(* Alpha-equivalence *)
Theorem RACONV:
(RACONV env (Var x1 ty1,Var x2 ty2) <=>
ALPHAVARS env (Var x1 ty1,Var x2 ty2)) /\
(RACONV env (Var x1 ty1,Const x2 ty2) <=> F) /\
(RACONV env (Var x1 ty1,Comb l2 r2) <=> F) /\
(RACONV env (Var x1 ty1,Abs v2 t2) <=> F) /\
(RACONV env (Const x1 ty1,Var x2 ty2) <=> F) /\
(RACONV env (Const x1 ty1,Const x2 ty2) <=> (x1 = x2) /\ (ty1 = ty2)) /\
(RACONV env (Const x1 ty1,Comb l2 r2) <=> F) /\
(RACONV env (Const x1 ty1,Abs v2 t2) <=> F) /\
(RACONV env (Comb l1 r1,Var x2 ty2) <=> F) /\
(RACONV env (Comb l1 r1,Const x2 ty2) <=> F) /\
(RACONV env (Comb l1 r1,Comb l2 r2) <=>
RACONV env (l1,l2) /\ RACONV env (r1,r2)) /\
(RACONV env (Comb l1 r1,Abs v2 t2) <=> F) /\
(RACONV env (Abs v1 t1,Var x2 ty2) <=> F) /\
(RACONV env (Abs v1 t1,Const x2 ty2) <=> F) /\
(RACONV env (Abs v1 t1,Comb l2 r2) <=> F) /\
(RACONV env (Abs v1 t1,Abs v2 t2) <=>
typeof v1 = typeof v2 /\
RACONV (CONS (v1,v2) env) (t1,t2))
Proof
REPEAT CONJ_TAC THEN simp[Once RACONV_cases] >> metis_tac[]
QED
Theorem RACONV_REFL:
∀t env. EVERY (UNCURRY $=) env ⇒ RACONV env (t,t)
Proof
Induct >> simp[RACONV,ALPHAVARS_REFL]
QED
Theorem ACONV_REFL:
∀t. ACONV t t
Proof
simp[ACONV_def,RACONV_REFL]
QED
val _ = export_rewrites["ACONV_REFL"]
Theorem RACONV_TRANS:
∀env tp. RACONV env tp ⇒ ∀vs t. LENGTH vs = LENGTH env ∧ RACONV (ZIP(MAP SND env,vs)) (SND tp,t) ⇒ RACONV (ZIP(MAP FST env,vs)) (FST tp, t)
Proof
ho_match_mp_tac RACONV_ind >> simp[RACONV] >>
conj_tac >- (
Induct >- simp[ALPHAVARS_def] >>
Cases >> simp[ALPHAVARS_def] >>
rw[] >> Cases_on`vs`>>fs[] >>
Cases_on`t`>>fs[RACONV]>>
fs[ALPHAVARS_def] >> rw[] >>
metis_tac[RACONV] ) >>
conj_tac >- ( rw[] >> Cases_on`t`>>fs[RACONV] ) >>
conj_tac >- ( rw[] >> Cases_on`t`>>fs[RACONV] ) >>
rw[] >>
Cases_on`t`>>fs[RACONV]>>rw[]>>
metis_tac[LENGTH,ZIP]
QED
Theorem ACONV_TRANS:
∀t1 t2 t3. ACONV t1 t2 ∧ ACONV t2 t3 ⇒ ACONV t1 t3
Proof
rw[ACONV_def] >> imp_res_tac RACONV_TRANS >> fs[LENGTH_NIL]
QED
Theorem RACONV_SYM:
∀env tp. RACONV env tp ⇒ RACONV (MAP (λ(x,y). (y,x)) env) (SND tp,FST tp)
Proof
ho_match_mp_tac RACONV_ind >> simp[] >>
conj_tac >- (
Induct >> simp[ALPHAVARS_def,RACONV] >>
Cases >> simp[] >>
rw[] >> res_tac >> fs[RACONV]) >>
simp[RACONV]
QED
Theorem ACONV_SYM:
∀t1 t2. ACONV t1 t2 ⇒ ACONV t2 t1
Proof
rw[ACONV_def] >> imp_res_tac RACONV_SYM >> fs[]
QED
Theorem ALPHAVARS_TYPE:
∀env s t. ALPHAVARS env (s,t) ∧
EVERY (λ(x,y). welltyped x ∧ welltyped y
∧ (typeof x = typeof y)) env ∧
welltyped s ∧ welltyped t
⇒ typeof s = typeof t
Proof
Induct >> simp[ALPHAVARS_def,FORALL_PROD] >> rw[] >> rw[]
QED
Theorem RACONV_TYPE:
∀env p. RACONV env p
⇒ EVERY (λ(x,y). welltyped x ∧ welltyped y
∧ (typeof x = typeof y)) env ∧
welltyped (FST p) ∧ welltyped (SND p)
⇒ typeof (FST p) = typeof (SND p)
Proof
ho_match_mp_tac RACONV_ind >>
simp[FORALL_PROD,typeof_def,WELLTYPED_CLAUSES] >>
rw[] >> imp_res_tac ALPHAVARS_TYPE >>
fs[typeof_def,WELLTYPED_CLAUSES]
QED
Theorem ACONV_TYPE:
∀s t. ACONV s t ⇒ welltyped s ∧ welltyped t ⇒ (typeof s = typeof t)
Proof
rw[ACONV_def] >> imp_res_tac RACONV_TYPE >> fs[]
QED
(* subtypes *)
Inductive subtype1:
MEM a args ⇒ subtype1 a (Tyapp name args)
End
val _ = Parse.add_infix("subtype",401,Parse.NONASSOC)
Overload subtype =``RTC subtype1``
Theorem subtype_Tyvar =
``ty subtype (Tyvar x)``
|> SIMP_CONV(srw_ss()++boolSimps.DNF_ss)
[Once relationTheory.RTC_CASES2,subtype1_cases]
val _ = export_rewrites["subtype_Tyvar"]
Theorem subtype_Tyapp =
``ty subtype (Tyapp name args)``
|> SIMP_CONV(srw_ss()++boolSimps.DNF_ss)
[Once relationTheory.RTC_CASES2,subtype1_cases]
Theorem subtype_trans:
!x y z. x subtype y /\ y subtype z ==> x subtype z
Proof
assume_tac (Q.ISPEC `$subtype` transitive_def) >> fs[]
QED
Theorem subtype_TYPE_SUBST:
!a b s. (a subtype b) ==> ((TYPE_SUBST s a) subtype (TYPE_SUBST s b))
Proof
simp[GSYM PULL_FORALL]
>> ho_match_mp_tac RTC_INDUCT
>> rw[]
>> `subtype1 (TYPE_SUBST s a) (TYPE_SUBST s a')` by (
fs[subtype1_cases,MEM_MAP,ELIM_UNCURRY]
>> qexists_tac `a`
>> fs[]
)
>> match_mp_tac (CONJUNCT2 (SPEC_ALL RTC_RULES))
>> asm_exists_tac
>> simp[]
QED
Theorem subtype_tyvars:
!a ty. MEM a (tyvars ty) = ((Tyvar a) subtype ty)
Proof
CONV_TAC SWAP_FORALL_CONV
>> ho_match_mp_tac type_ind
>> strip_tac
>- rw[tyvars_def]
>> rw[MEM_FOLDR_LIST_UNION,EQ_IMP_THM,tyvars_def,EVERY_MEM,ELIM_UNCURRY]
>- (
first_x_assum drule
>> disch_then (qspec_then `a` mp_tac)
>> rw[subtype_Tyapp]
>> asm_exists_tac
>> simp[]
)
>> fs[subtype_Tyapp]
>> first_x_assum drule
>> disch_then (qspec_then `a` mp_tac)
>> rw[]
>> asm_exists_tac
>> simp[]
QED
Theorem subtype_type_ok:
∀tysig ty1 ty2. type_ok tysig ty2 ∧ ty1 subtype ty2 ⇒ type_ok tysig ty1
Proof
gen_tac >>
(relationTheory.RTC_lifts_invariants
|> Q.GEN`R` |> Q.ISPEC`inv subtype1`
|> SIMP_RULE std_ss [relationTheory.inv_MOVES_OUT,relationTheory.inv_DEF]
|> Q.GEN`P` |> Q.ISPEC`type_ok tysig`
|> match_mp_tac) >>
ONCE_REWRITE_TAC[CONJ_COMM] >>
ONCE_REWRITE_TAC[GSYM AND_IMP_INTRO] >>
CONV_TAC SWAP_FORALL_CONV >> gen_tac >>
ho_match_mp_tac subtype1_ind >>
simp[type_ok_def,EVERY_MEM]
QED
Theorem subtype1_strong_ind:
∀subtype1'.
(∀a args name. MEM a args ⇒ subtype1' a (Tyapp name args)) ⇒
∀a a0. subtype1 a a0 ⇒ subtype1' a a0
Proof
rw[subtype1_cases]
>> res_tac
>> fs[]
QED
Theorem subtype1_type_size:
subtype1 x y ==> type_size x < type_size y
Proof
rw[subtype1_cases]
>> fs[type_size_def,type1_size_append,MEM_SPLIT]
QED
Theorem subtype1_type_size':
subtype1 x y ==> type_size' x < type_size' y
Proof
rw[subtype1_cases]
>> fs[type_size'_def,type1_size'_append,MEM_SPLIT]
QED
Theorem TC_subtype1_type_size:
!x y. TC subtype1 x y ==> type_size x < type_size y
Proof
ho_match_mp_tac TC_INDUCT_RIGHT1
>> rw[subtype1_type_size]
>> dxrule_then assume_tac subtype1_type_size
>> fs[]
QED
Theorem TC_subtype1_type_size':
!x y. TC subtype1 x y ==> type_size' x < type_size' y
Proof
ho_match_mp_tac TC_INDUCT_RIGHT1
>> rw[subtype1_type_size']
>> dxrule_then assume_tac subtype1_type_size'
>> fs[]
QED
Theorem TC_subtype1_Tyvar:
!x y. ~TC subtype1 x (Tyvar y)
Proof
`!x y. TC subtype1 x y ==> (?z. y = (Tyvar z)) ==> F` by (
ho_match_mp_tac TC_INDUCT_RIGHT1
>> rw[subtype1_cases,PULL_EXISTS]
)
>> metis_tac[]
QED
Theorem subtype_type_size:
!x y. x subtype y ==> type_size x <= type_size y
Proof
ho_match_mp_tac RTC_INDUCT
>> rw[type_size_def]
>> imp_res_tac subtype1_type_size
>> fs[]
QED
Theorem subtype_antisymmetric:
!x y. x subtype y /\ y subtype x ==> x = y
Proof
Ho_Rewrite.REWRITE_TAC[GSYM AND_IMP_INTRO,GSYM PULL_FORALL]
>> rpt gen_tac
>> strip_tac
>> rw[Once RTC_CASES2]
>> dxrule_then assume_tac subtype1_type_size
>> rpt (dxrule_then assume_tac subtype_type_size)
>> fs[]
QED
Theorem allTypes_subtype:
!x t. MEM x (allTypes' t) ==> x subtype t
Proof
gen_tac
>> ho_match_mp_tac allTypes'_defn_ind
>> rw[allTypes'_defn,subtype_Tyvar]
>> rw[Once RTC_CASES2,subtype1_cases]
>> disj2_tac
>> fs[PULL_EXISTS,MEM_MAP,MEM_FLAT]
>> res_tac
>> rpt(goal_assum (first_assum o mp_then Any mp_tac))
QED
(* subterms *)
Inductive subterm1:
subterm1 t1 (Comb t1 t2) ∧
subterm1 t2 (Comb t1 t2) ∧
subterm1 tm (Abs v tm) ∧
subterm1 v (Abs v tm)
End
val _ = Parse.add_infix("subterm",401,Parse.NONASSOC)
Overload subterm = ``RTC subterm1``
Theorem subterm_Var =
``tm subterm (Var x ty)``
|> SIMP_CONV(srw_ss()++boolSimps.DNF_ss)
[Once relationTheory.RTC_CASES2,subterm1_cases]
Theorem subterm_Const =
``tm subterm (Const x ty)``
|> SIMP_CONV(srw_ss()++boolSimps.DNF_ss)
[Once relationTheory.RTC_CASES2,subterm1_cases]
val _ = export_rewrites["subterm_Var","subterm_Const"]
Theorem subterm_Comb =
``tm subterm (Comb t1 t2)``
|> SIMP_CONV(srw_ss()++boolSimps.DNF_ss)
[Once relationTheory.RTC_CASES2,subterm1_cases]
Theorem subterm_Abs =
``tm subterm (Abs v t)``
|> SIMP_CONV(srw_ss()++boolSimps.DNF_ss)
[Once relationTheory.RTC_CASES2,subterm1_cases]
Triviality subterm_welltyped_helper:
∀tm ty. tm has_type ty ⇒ ∀t. t subterm tm ⇒ welltyped t
Proof
ho_match_mp_tac has_type_strongind >>
simp[subterm_Comb,subterm_Abs] >> rw[] >>
rw[] >> imp_res_tac WELLTYPED_LEMMA >> simp[]
QED
Theorem subterm_welltyped =
METIS_PROVE[subterm_welltyped_helper,welltyped_def]
``∀t tm. welltyped tm ∧ t subterm tm ⇒ welltyped t``
(* term ordering *)
Theorem type_lt_thm = Q.prove(
`(type_lt (Tyvar x1) (Tyvar x2) ⇔ mlstring_lt x1 x2) ∧
(type_lt (Tyvar _) (Tyapp _ _) ⇔ T) ∧
(type_lt (Tyapp _ _) (Tyvar _) ⇔ F) ∧
(type_lt (Tyapp x1 args1) (Tyapp x2 args2) ⇔
(mlstring_lt LEX LLEX type_lt)
(x1,args1) (x2,args2))`,
rw[] >> rw[Once type_lt_cases])
|> CONJUNCTS |> map GEN_ALL |> LIST_CONJ
Theorem term_lt_thm = Q.prove(`
(term_lt (Var x1 ty1) (Var x2 ty2) ⇔
(mlstring_lt LEX type_lt) (x1,ty1) (x2,ty2)) ∧
(term_lt (Var _ _) (Const _ _) ⇔ T) ∧
(term_lt (Var _ _) (Comb _ _) ⇔ T) ∧
(term_lt (Var _ _) (Abs _ _) ⇔ T) ∧
(term_lt (Const _ _) (Var _ _) ⇔ F) ∧
(term_lt (Const x1 ty1) (Const x2 ty2) ⇔
(mlstring_lt LEX type_lt) (x1,ty1) (x2,ty2)) ∧
(term_lt (Const _ _) (Comb _ _) ⇔ T) ∧
(term_lt (Const _ _) (Abs _ _) ⇔ T) ∧
(term_lt (Comb _ _) (Var _ _) ⇔ F) ∧
(term_lt (Comb _ _) (Const _ _) ⇔ F) ∧
(term_lt (Comb s1 s2) (Comb t1 t2) ⇔
(term_lt LEX term_lt) (s1,s2) (t1,t2)) ∧
(term_lt (Comb _ _) (Abs _ _) ⇔ T) ∧
(term_lt (Abs _ _) (Var _ _) ⇔ F) ∧
(term_lt (Abs _ _) (Const _ _) ⇔ F) ∧
(term_lt (Abs _ _) (Comb _ _) ⇔ F) ∧
(term_lt (Abs s1 s2) (Abs t1 t2) ⇔
(term_lt LEX term_lt) (s1,s2) (t1,t2))`,
rw[] >> rw[Once term_lt_cases])
|> CONJUNCTS |> map GEN_ALL |> LIST_CONJ
Theorem type_cmp_refl[simp]:
type_cmp t t = EQUAL
Proof
rw[type_cmp_def,TO_of_LinearOrder]
QED
Theorem term_cmp_refl[simp]:
term_cmp t t = EQUAL
Proof
rw[term_cmp_def,TO_of_LinearOrder]
QED
Theorem irreflexive_type_lt[local]:
irreflexive type_lt
Proof
mp_tac StrongLinearOrder_mlstring_lt >>
simp[StrongLinearOrder,StrongOrder,irreflexive_def] >>
strip_tac >> ho_match_mp_tac type_ind >>
simp[type_lt_thm,LEX_DEF] >>
Induct >> simp[]
QED
Theorem trichotomous_type_lt[local]:
trichotomous type_lt
Proof
mp_tac StrongLinearOrder_mlstring_lt >>
simp[StrongLinearOrder,trichotomous] >> strip_tac >>
ho_match_mp_tac type_ind >>
conj_tac >- (
gen_tac >> Cases >> simp[type_lt_thm] ) >>
gen_tac >> strip_tac >> gen_tac >> Cases >> simp[type_lt_thm,LEX_DEF_THM] >>
first_x_assum(qspecl_then[`m`,`m'`]strip_assume_tac) >> simp[] >>
fs[StrongOrder,irreflexive_def] >> rw[] >>
pop_assum mp_tac >>
qspec_tac(`l'`,`l2`) >>
Induct_on`l` >>
Cases_on`l2`>>simp[]>>
rw[] >> fs[] >>
metis_tac[]
QED
Theorem transitive_type_lt[local]:
∀x y. type_lt x y ⇒ ∀z. type_lt y z ⇒ type_lt x z
Proof
ho_match_mp_tac type_lt_strongind >>
rpt conj_tac >> rpt gen_tac >> simp[PULL_FORALL] >>
Cases_on`z` >> simp[type_lt_thm,LEX_DEF_THM] >-
metis_tac[StrongLinearOrder_mlstring_lt,StrongLinearOrder,StrongOrder,transitive_def] >>
strip_tac >- metis_tac[StrongLinearOrder_mlstring_lt,StrongLinearOrder,StrongOrder,transitive_def] >>
strip_tac >- metis_tac[StrongLinearOrder_mlstring_lt,StrongLinearOrder,StrongOrder,transitive_def] >>
rw[] >> disj2_tac >>
fs[LLEX_EL_THM] >>
qmatch_assum_rename_tac`n2 ≤ LENGTH args2` >>
Cases_on`n < LENGTH args1`>>fsrw_tac[ARITH_ss][] >- (
`EL n args1 ≠ EL n args2` by metis_tac[irreflexive_type_lt,irreflexive_def] >>
Cases_on`n < n2` >> fsrw_tac[ARITH_ss][] >- (
qexists_tac`n` >> simp[] >>
conj_tac >- (
simp[LIST_EQ_REWRITE,rich_listTheory.EL_TAKE] >>
rfs[LIST_EQ_REWRITE,rich_listTheory.EL_TAKE] >> rw[] >>
first_x_assum(qspec_then`x`mp_tac) >>
simp[rich_listTheory.EL_TAKE] ) >>
`EL n args2 = EL n l` by (