-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathholSyntaxRenamingTyvarScript.sml
2605 lines (2441 loc) · 80.9 KB
/
holSyntaxRenamingTyvarScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
* Properties of RenamingTheory for our syntax
*)
open preamble totoTheory comparisonTheory ternaryComparisonsTheory mlstringTheory
holSyntaxLibTheory holSyntaxTheory holSyntaxExtraTheory
holSyntaxRenamingTheory
val _ = new_theory"holSyntaxRenamingTyvar"
(* overloads for set operations on lists *)
val _ = Parse.add_infix("∩", 401, Parse.NONASSOC)
Overload "∩" = ``λs t. list_inter s t``
val _ = Parse.add_infix("\\", 401, Parse.NONASSOC)
Overload "\\" = ``λs t. list_complement s t``
val _ = Parse.add_infix("∪", 401, Parse.NONASSOC)
Overload "∪" = ``λs t. LIST_UNION s t``
val _ = Parse.add_infix("⊆", 401, Parse.NONASSOC)
Overload "⊆" = ``λs t. list_subset s t``
(* general properties of pairs *)
Theorem FST_SND_PAIR_MAP:
!f g. FST o (f ## g) = f o FST
/\ !f g. SND o (f ## g) = g o SND
Proof
rw[SND_PAIR_MAP,FST_PAIR_MAP,FUN_EQ_THM,o_DEF]
QED
Theorem MEM_MAP_SWAP':
!x s. MEM x (MAP SWAP s) = MEM (SWAP x) s
Proof
rw[MEM_MAP,EQ_IMP_THM]
>- fs[SWAP_def]
>> goal_assum (first_assum o mp_then Any mp_tac)
>> fs[SWAP_def]
QED
Theorem MEM_MAP_SWAP:
!x s. MEM (SWAP x) (MAP SWAP s) = MEM x s
Proof
Cases >> rename1`(x,y)`
>> qspec_then `(y,x)` assume_tac MEM_MAP_SWAP'
>> fs[SWAP_def]
QED
Triviality EVERY_MEM_SWAP_eq:
!s. EVERY (λx. MEM (SWAP x) s) s ⇔ set (MAP SWAP s) = set s
Proof
rw[EQ_IMP_THM,EVERY_MEM,pred_setTheory.EXTENSION,FORALL_AND_THM]
>- fs[MEM_MAP]
>- fs[MEM_MAP_SWAP']
>> fs[MEM_MAP_SWAP']
QED
Theorem SWAP_EQ_FST_SND:
!x. SWAP x = x ⇔ FST x = SND x
Proof
Cases >> rw[EQ_IMP_THM]
>> fs[SWAP_def]
QED
Theorem SWAP_eq:
SWAP = λ(x,y). (y,x)
Proof
fs[FUN_EQ_THM,SWAP_def,ELIM_UNCURRY]
QED
Theorem MAP_INVOL:
!f xs ys. INVOL f ==> (MAP f xs = ys) = (xs = MAP f ys)
Proof
rw[INVOL_DEF,EQ_IMP_THM]
>> TRY (qpat_x_assum `MAP _ = _` (assume_tac o GSYM))
>> fs[MAP_MAP_o]
QED
Theorem SWAP_SWAP_INVOL:
SWAP o SWAP = I
Proof
rw[FUN_EQ_THM,SWAP_def]
QED
val MAP_SWAP = REWRITE_RULE[INVOL_DEF,SWAP_SWAP_INVOL]
(SPEC ``SWAP:'a#'a->'a#'a`` (INST_TYPE [alpha |-> ``:'a#'a``] MAP_INVOL))
Theorem MEM_APPEND_SND_lemma:
!a b c d x y.
a ++ [x] ++ b = c ++ [y] ++ d
∧ ¬MEM (SND x) (MAP SND a) ∧ ¬MEM (SND y) (MAP SND c)
∧ SND x = SND y
==> a = c
Proof
rw[]
>> imp_res_tac (CONTRAPOS (SPEC_ALL (Q.ISPEC `SND` MEM_MAP_f)))
>> qspecl_then [`a`,`[x]++b`,`c`,`[y]++d`]
assume_tac (INST_TYPE [alpha |-> ``:'a#'b``] (REWRITE_RULE[IS_PREFIX_APPEND] APPEND_EQ_APPEND_IS_PREFIX))
>> rfs[] >> rveq >> fs[]
>> Cases_on `l`
>> rfs[] >> rveq >> fs[]
QED
Theorem MEM_APPEND_FST_lemma:
!a b c d x y.
a ++ [x] ++ b = c ++ [y] ++ d
∧ ¬MEM (FST x) (MAP FST a) ∧ ¬MEM (FST y) (MAP FST c)
∧ FST x = FST y
==> a = c
Proof
rw[]
>> imp_res_tac (CONTRAPOS (SPEC_ALL (Q.ISPEC `FST` MEM_MAP_f)))
>> qspecl_then [`a`,`[x]++b`,`c`,`[y]++d`]
assume_tac (INST_TYPE [alpha |-> ``:'a#'b``] (REWRITE_RULE[IS_PREFIX_APPEND] APPEND_EQ_APPEND_IS_PREFIX))
>> rfs[] >> rveq >> fs[]
>> Cases_on `l`
>> rfs[] >> rveq >> fs[]
QED
Theorem ALOOKUP_MEM_eq:
!s x y. (ALOOKUP s x = SOME y)
= ?pfx sfx. s = pfx ++ [(x,y)] ++ sfx /\ ~MEM x (MAP FST pfx)
Proof
Induct >- fs[ALOOKUP_def]
>> rw[EQ_IMP_THM]
>> rename1`h::s`
>> Cases_on `h`
>> fs[ALOOKUP_def]
>> FULL_CASE_TAC
>> fs[]
>- (
qexists_tac `[]`
>> fs[]
)
>- (
res_tac
>> qexists_tac `(q,r)::pfx`
>> fs[]
)
>- (
qmatch_asmsub_rename_tac `pfx ++ [_] ++ sfx`
>> Cases_on `pfx`
>> fs[MEM_MAP]
>> qmatch_assum_rename_tac`(_,_)=h`
>> first_x_assum (qspec_then `h` assume_tac)
>> rveq
>> fs[]
)
>- (
qmatch_asmsub_rename_tac `pfx ++ [_] ++ sfx`
>> Cases_on `pfx` >> fs[]
>> ONCE_REWRITE_TAC[CONJ_COMM]
>> asm_exists_tac
>> fs[]
)
QED
Theorem MEM_ALOOKUP_INJ:
!f g xs x v. (!x y. f x = f y ==> x = y) /\ (!x y. g x = g y ==> x = y)
==> (ALOOKUP (MAP (f ## g) xs) (f x) = SOME (g v))
= (ALOOKUP xs x = SOME v)
Proof
NTAC 2 strip_tac
>> Induct
>> rw[PAIR_MAP]
>- (
Cases_on `h`
>> fs[EQ_IMP_THM,ALOOKUP_def]
)
>> Cases_on `h`
>> fs[ALOOKUP_def]
>> FULL_CASE_TAC
>> rw[]
QED
Theorem MEM_SPLIT_APPEND_FST_first:
!s x. MEM x (MAP FST s) ==>
?pfx sfx q. s = pfx ++ [(x,q)] ++ sfx /\ ~MEM x (MAP FST pfx)
Proof
rpt strip_tac
>> pop_assum (assume_tac o PURE_ONCE_REWRITE_RULE [MEM_SPLIT_APPEND_first])
>> fs[]
>> rename1 `pfx ++ [x] ++ sfx`
>> qexists_tac `TAKE (LENGTH pfx) s`
>> qexists_tac `DROP (SUC (LENGTH pfx)) s`
>> qexists_tac `EL (LENGTH pfx) (MAP SND s)`
>> ONCE_REWRITE_TAC[GSYM ZIP_MAP_FST_SND_EQ]
>> fs[MAP_APPEND,MAP_ZIP,MAP_TAKE]
>> NTAC 2 (ONCE_REWRITE_TAC[GSYM APPEND_ASSOC])
>> REWRITE_TAC[TAKE_LENGTH_APPEND,GEN_ALL MAP_DROP]
>> qspec_then `LENGTH pfx` assume_tac LESS_EQ_SUC_REFL
>> fs[DROP_APPEND2,ADD1]
>> `LENGTH pfx < LENGTH (MAP SND s)` by (
fs[LENGTH_MAP]
>> ONCE_REWRITE_TAC[Q.ISPEC `FST` (CONV_RULE SWAP_FORALL_CONV (GSYM LENGTH_MAP))]
>> ASM_REWRITE_TAC[]
>> fs[]
)
>> imp_res_tac (GSYM TAKE1_DROP)
>> ASM_REWRITE_TAC[GSYM TAKE_SUM]
>> fs[TAKE_DROP]
QED
Theorem MEM_Tyvar_MAP_Tyvar:
!l x. MEM (Tyvar x) (MAP Tyvar l) = MEM x l
Proof
match_mp_tac MEM_f_MAP_f_INJ
>> fs[]
QED
(* properties of set functions for lists (e.g. list_inter, LIST_UNION) *)
Theorem NULL_list_inter_INJ:
!f l1 l2. (!x y. f x = f y ==> x = y) ==>
NULL (list_inter (MAP f l1) (MAP f l2)) = NULL (list_inter l1 l2)
Proof
rw[NULL_FILTER,list_inter_def,EQ_IMP_THM]
>- (
dxrule MEM_MAP_f
>> CCONTR_TAC
>> fs[]
>> imp_res_tac MEM_MAP_f
>> imp_res_tac MEM_f_MAP_f_INJ
>> rpt (first_x_assum (qspec_then `f` assume_tac))
>> res_tac
)
>> CCONTR_TAC
>> fs[MEM_MAP]
>> rveq
>> res_tac
>> fs[]
QED
Theorem NULL_list_inter_MAP_Tyvar:
!l1 l2. NULL (list_inter (MAP Tyvar l1) (MAP Tyvar l2)) = NULL (list_inter l1 l2)
Proof
rw[NULL_list_inter_INJ]
QED
Theorem list_subset_id:
!l. list_subset l l
Proof
fs[list_subset_def,EVERY_MEM]
QED
Theorem list_complement_MAP_Tyvar:
!a b. MAP Tyvar (list_complement a b) = (list_complement (MAP Tyvar a) (MAP Tyvar b))
Proof
rw[]
>> match_mp_tac list_complement_MAP_INJ
>> fs[]
QED
Theorem LIST_INSERT_MAP_Tyvar:
!a b. MAP Tyvar (LIST_INSERT a b) = (LIST_INSERT (Tyvar a) (MAP Tyvar b))
Proof
CONV_TAC SWAP_FORALL_CONV
>> Induct
>> rw[LIST_INSERT_def]
>> assume_tac (Q.ISPEC `Tyvar` MEM_f_MAP_f_INJ)
>> fs[]
QED
Theorem LIST_UNION_MAP_Tyvar:
!a b. MAP Tyvar (LIST_UNION a b) = LIST_UNION (MAP Tyvar a) (MAP Tyvar b)
Proof
Induct
>> rw[LIST_UNION_def]
>> fs[LIST_INSERT_MAP_Tyvar,GSYM LIST_UNION_def]
QED
Theorem list_inter_LIST_UNION_NULL:
!a b c. NULL (list_inter a (LIST_UNION b c))
= (NULL (list_inter a b) /\ NULL (list_inter a c))
Proof
rw[NULL_FILTER,list_inter_def]
>> rw[EQ_IMP_THM]
>> fs[]
QED
Theorem MEM_LIST_UNION:
!x a b. MEM x (LIST_UNION a b) = (MEM x a \/ MEM x b)
Proof
fs[set_LIST_UNION]
QED
(* TODO put somewhere else *)
Theorem UNION_DIFF_EQ:
!s t. ((s:'a -> bool) ∪ (t DIFF s)) = (s ∪ t)
Proof
rw[pred_setTheory.EXTENSION,EQ_IMP_THM] >> fs[]
QED
Theorem CARD_LIST_TO_SET_ALL_DISTINCT_eq =
CONJ
(SPEC ``ls:'a list`` CARD_LIST_TO_SET_ALL_DISTINCT)
(SPEC ``ls:'a list`` ALL_DISTINCT_CARD_LIST_TO_SET)
|> REWRITE_RULE[GSYM EQ_IMP_THM]
|> GEN_ALL
Theorem ALL_DISTINCT_set_eq:
!A B. ALL_DISTINCT A
∧ LENGTH A = LENGTH B
∧ set A = set B
⇒ ALL_DISTINCT B
Proof
rpt strip_tac
>> fs[GSYM CARD_LIST_TO_SET_ALL_DISTINCT_eq,EQ_SYM_EQ]
QED
(* non-trivial permutations *)
Definition rename_bij_def:
rename_bij s =
(set (MAP FST s) = set (MAP SND s)
∧ EVERY (UNCURRY $<>) s
∧ ALL_DISTINCT (MAP SND s))
End
Theorem rename_bij_ALL_DISTINCT_FST:
!s. rename_bij s⇒ ALL_DISTINCT (MAP FST s)
Proof
rw[rename_bij_def]
>> drule_then match_mp_tac ALL_DISTINCT_set_eq
>> fs[]
QED
Theorem rename_bij_SWAP_IMP:
!s. rename_bij s ⇒ rename_bij (MAP SWAP s)
Proof
rpt strip_tac
>> drule_then assume_tac rename_bij_ALL_DISTINCT_FST
>> fs[FST_SND_SWAP,MAP_MAP_o,EVERY_MAP,rename_bij_def]
>> qpat_x_assum `EVERY _ _` mp_tac
>> match_mp_tac (Ho_Rewrite.REWRITE_RULE[PULL_FORALL] EVERY_MONOTONIC)
>> fs[SWAP_def,ELIM_UNCURRY]
QED
Theorem rename_bij_def_imps =
Ho_Rewrite.REWRITE_RULE[EQ_IMP_THM,FORALL_AND_THM,IMP_CONJ_THM] rename_bij_def
|> CONJUNCT1
Theorem rename_bij_MEM_REV_ASSOCD:
!s x. MEM x s ∧ rename_bij s
⇒ REV_ASSOCD (SND x) s (SND x) = FST x
Proof
rw[]
>> imp_res_tac (Q.ISPEC `SND` MEM_MAP_f)
>> drule_then strip_assume_tac MEM_SPLIT_APPEND_SND_first
>> rveq
>> ONCE_REWRITE_TAC[GSYM APPEND_ASSOC]
>> dxrule_then (REWRITE_TAC o single) REV_ASSOCD_drop_prefix
>> qpat_x_assum `MEM _ (MAP _ _)` kall_tac
>> dxrule_then assume_tac (List.nth(CONJUNCTS rename_bij_def_imps,2))
>> rw[REV_ASSOCD_def]
>> fs[ALL_DISTINCT_APPEND,DISJ_IMP_THM,FORALL_AND_THM]
>> TRY (dxrule (Q.ISPEC `SND` MEM_MAP_f)) >> fs[]
>> qmatch_goalsub_abbrev_tac `FST x` >> Cases_on `x` >> fs[]
QED
Theorem rename_bij_NOT_MEM_REV_ASSOCD:
!s. rename_bij s ⇒
!y. ¬MEM y (MAP SND s) ⇔ REV_ASSOCD y s y = y
Proof
rw[EQ_IMP_THM]
>- (dxrule REV_ASSOCD_NOT_MEM_drop >> fs[])
>> CCONTR_TAC >> fs[MEM_MAP]
>> drule_all_then assume_tac rename_bij_MEM_REV_ASSOCD
>> fs[rename_bij_def,EVERY_MEM]
>> res_tac >> fs[ELIM_UNCURRY]
QED
Theorem rename_bij_SWAP_id:
!s t. rename_bij s ⇒
REV_ASSOCD (REV_ASSOCD t s t) (MAP SWAP s) (REV_ASSOCD t s t) = t
Proof
rw[]
>> Cases_on `MEM t (MAP SND s)`
>- (
fs[MEM_MAP]
>> drule_all_then strip_assume_tac rename_bij_MEM_REV_ASSOCD
>> ASM_REWRITE_TAC[]
>> ONCE_REWRITE_TAC[GSYM FST_SND_SWAP]
>> fs[o_DEF]
>> match_mp_tac rename_bij_MEM_REV_ASSOCD
>> fs[rename_bij_SWAP_IMP,MEM_MAP_SWAP]
)
>> drule_then (drule_then (rw o single))
(Ho_Rewrite.REWRITE_RULE[IMP_CONJ_THM,EQ_IMP_THM,FORALL_AND_THM,pred_setTheory.EXTENSION]
rename_bij_NOT_MEM_REV_ASSOCD |> CONJUNCT1)
>> `~MEM t (MAP SND (MAP SWAP s))` by fs[rename_bij_def,FST_SND_SWAP,MAP_MAP_o]
>> dxrule_then assume_tac rename_bij_SWAP_IMP
>> drule_then (fs o single) rename_bij_NOT_MEM_REV_ASSOCD
QED
Theorem rename_bij_SWAP_id':
!s t. rename_bij s ⇒
REV_ASSOCD (REV_ASSOCD t (MAP SWAP s) t) s (REV_ASSOCD t (MAP SWAP s) t) = t
Proof
rpt strip_tac
>> dxrule_then assume_tac rename_bij_SWAP_IMP
>> dxrule rename_bij_SWAP_id
>> fs[MAP_MAP_o,SWAP_SWAP_INVOL]
QED
Theorem rename_bij_inj_MEM[local]:
!s x x'. rename_bij s
/\ REV_ASSOCD x s x = REV_ASSOCD x' s x'
/\ MEM x (MAP SND s)
==> x = x'
Proof
rw[MEM_MAP]
>> drule_all_then strip_assume_tac rename_bij_MEM_REV_ASSOCD
>> Cases_on `MEM x' (MAP SND s)`
>- (
fs[MEM_MAP]
>> drule_all_then strip_assume_tac rename_bij_MEM_REV_ASSOCD
>> rgs[]
>> drule_then strip_assume_tac rename_bij_ALL_DISTINCT_FST
>> dxrule_then match_mp_tac ALL_DISTINCT_FST_MEMs
>> rename[`SND yy`]
>> PairCases_on `yy`
>> rgs[]
>> rename[`SND yy'`]
>> PairCases_on `yy'`
>> rgs[]
>> rpt $ goal_assum drule
)
>> drule $ cj 2 rename_bij_def_imps
>> rw[EVERY_MEM]
>> first_x_assum drule
>> drule_then imp_res_tac rename_bij_NOT_MEM_REV_ASSOCD
>> imp_res_tac $
Ho_Rewrite.REWRITE_RULE[SET_EQ_SUBSET,SUBSET_DEF] $
cj 1 rename_bij_def_imps
>> first_x_assum $ drule_at Concl
>> imp_res_tac $ Q.ISPEC `FST` MEM_MAP_f
>> rgs[]
QED
Theorem rename_bij_inj_NOT_MEM[local]:
!s x x'. rename_bij s
/\ REV_ASSOCD x s x = REV_ASSOCD x' s x'
/\ ~MEM x' (MAP SND s)
==> x = x'
Proof
rw[]
>> Cases_on `MEM x (MAP SND s)`
>- (drule_all rename_bij_inj_MEM >> fs[])
>> drule_then imp_res_tac rename_bij_NOT_MEM_REV_ASSOCD
>> fs[]
QED
Theorem rename_bij_inj:
!s x x'. rename_bij s
/\ REV_ASSOCD x s x = REV_ASSOCD x' s x'
==> x = x'
Proof
rw[]
>> Cases_on `MEM x (MAP SND s)`
>> metis_tac[rename_bij_inj_MEM,rename_bij_inj_NOT_MEM]
QED
(* TODO move *)
Theorem INSERT_DELETE':
x ∉ A ∧ x INSERT A = B ⇒ A = B DELETE x
Proof
rw[pred_setTheory.EXTENSION,DISJ_IMP_THM,FORALL_AND_THM,EQ_IMP_THM,DISJ_EQ_IMP]
QED
Theorem set_SWAP_EVEN:
!s. set (MAP SWAP s) = set s ∧ EVERY (UNCURRY $<>) s
∧ ALL_DISTINCT s
⇒ EVEN (LENGTH s)
Proof
gen_tac >> completeInduct_on `LENGTH s`
>> Cases >> rw[]
>> `h ≠ SWAP h` by (
ONCE_REWRITE_TAC[GSYM PAIR]
>> fs[SWAP_def,ELIM_UNCURRY]
)
>> `MEM (SWAP h) t` by (
fs[ELIM_UNCURRY,DISJ_IMP_THM,FORALL_AND_THM,EQ_IMP_THM,pred_setTheory.EXTENSION]
)
>> pop_assum (strip_assume_tac o REWRITE_RULE[MEM_SPLIT])
>> fs[ALL_DISTINCT_APPEND,FORALL_AND_THM,DISJ_IMP_THM]
>> fs[PULL_FORALL]
>> first_x_assum (qspec_then `l1 ++ l2` mp_tac)
>> fs[ALL_DISTINCT_APPEND,SIMP_RULE(srw_ss())[FUN_EQ_THM] SWAP_SWAP_INVOL]
>> impl_tac
>- (
`~MEM (SWAP h) (MAP SWAP l1) ∧ ~MEM (SWAP h) (MAP SWAP l2)` by (
fs[MEM_MAP_SWAP]
)
>> `~MEM h (MAP SWAP l1) ∧ ~MEM h (MAP SWAP l2)` by (
fs[MEM_MAP_SWAP']
)
>> dxrule (ONCE_REWRITE_RULE[CONJ_COMM] INSERT_DELETE')
>> rw[UNION_DELETE,DELETE_INSERT,DELETE_NON_ELEMENT_RWT,Once EQ_SYM_EQ]
>> dxrule (ONCE_REWRITE_RULE[CONJ_COMM] INSERT_DELETE')
>> rw[UNION_DELETE,DELETE_INSERT,DELETE_NON_ELEMENT_RWT,Once EQ_SYM_EQ]
)
>> qmatch_goalsub_abbrev_tac `EVEN a ⇒ EVEN b`
>> `b = SUC(SUC(a))` by (unabbrev_all_tac >> fs[])
>> fs[Abbr`b`,EVEN]
QED
Definition var_renaming_def:
var_renaming s =
(rename_bij s ∧ EVERY (λ(x,y). ∃a. y = Tyvar a) s)
End
Theorem var_renaming_eq:
!s. var_renaming s =
(rename_bij s ∧ EVERY (λx. ∃a b. x = (Tyvar a,Tyvar b)) s)
Proof
fs[EQ_IMP_THM,var_renaming_def,FORALL_AND_THM,GSYM AND_IMP_INTRO]
>> conj_tac
>- (
rw[EVERY_MEM,rename_bij_def,ELIM_UNCURRY]
>> imp_res_tac (Q.ISPEC `FST` MEM_MAP_f)
>> last_x_assum ((dxrule_then assume_tac) o CONJUNCT1 o Ho_Rewrite.REWRITE_RULE[EQ_IMP_THM,FORALL_AND_THM,pred_setTheory.EXTENSION])
>> fs[MEM_MAP]
>> qpat_x_assum `!x. _ ⇒ ?x. _` imp_res_tac
>> ONCE_REWRITE_TAC[GSYM PAIR]
>> fs[Excl"PAIR"]
)
>> ntac 2 strip_tac
>> match_mp_tac (Ho_Rewrite.REWRITE_RULE[PULL_FORALL] EVERY_MONOTONIC)
>> fs[ELIM_UNCURRY,PULL_EXISTS]
QED
Theorem var_renaming_nil:
var_renaming []
Proof
fs[rename_bij_def,var_renaming_def]
QED
Theorem var_renaming_SWAP_IMP:
!s. var_renaming s ⇒ var_renaming (MAP SWAP s)
Proof
rw[var_renaming_eq,rename_bij_SWAP_IMP,EVERY_MAP]
>> qpat_x_assum `EVERY _ _` mp_tac
>> match_mp_tac (Ho_Rewrite.REWRITE_RULE[PULL_FORALL] EVERY_MONOTONIC)
>> Cases
>> rw[SWAP_def,ELIM_UNCURRY]
QED
Theorem var_renaming_SWAP_eq:
!s. var_renaming (MAP SWAP s) = var_renaming s
Proof
rw[EQ_IMP_THM,var_renaming_SWAP_IMP]
>> imp_res_tac var_renaming_SWAP_IMP
>> fs[MAP_MAP_o,SWAP_def,o_DEF]
QED
Theorem var_renaming_MEM_TYPE_SUBST:
!s x y. MEM (x,Tyvar y) s ∧ var_renaming s
⇒ TYPE_SUBST s (Tyvar y) = x
Proof
rw[var_renaming_def]
>> drule_all rename_bij_MEM_REV_ASSOCD
>> fs[]
QED
Theorem var_renaming_MEM_REV_ASSOCD =
REWRITE_RULE[TYPE_SUBST_def]var_renaming_MEM_TYPE_SUBST
Theorem var_renaming_NOT_MEM_TYPE_SUBST:
!s. var_renaming s ⇒
!y. ¬MEM (Tyvar y) (MAP SND s) ⇔ TYPE_SUBST s (Tyvar y) = Tyvar y
Proof
fs[var_renaming_def,rename_bij_NOT_MEM_REV_ASSOCD]
QED
Theorem var_renaming_NOT_MEM_REV_ASSOCD_IMP =
Ho_Rewrite.REWRITE_RULE
[FORALL_AND_THM,IMP_CONJ_THM,AND_IMP_INTRO,EQ_IMP_THM,TYPE_SUBST_def]
var_renaming_NOT_MEM_TYPE_SUBST
|> CONJUNCT1 |> Ho_Rewrite.REWRITE_RULE[PULL_FORALL,AND_IMP_INTRO]
Theorem var_renaming_SWAP_id:
!s t. var_renaming s ⇒
TYPE_SUBST (MAP SWAP s) (TYPE_SUBST s t) = t
Proof
rw[TYPE_SUBST_compose]
>> CONV_TAC (RHS_CONV(PURE_ONCE_REWRITE_CONV [GSYM TYPE_SUBST_NIL]))
>> rw[TYPE_SUBST_tyvars,REV_ASSOCD_def]
>> ONCE_REWRITE_TAC[GSYM TYPE_SUBST_def]
>> REWRITE_TAC[GSYM TYPE_SUBST_compose]
>> Cases_on `MEM (Tyvar x) (MAP SND s)`
>- (
fs[MEM_MAP] >> PairCases_on `y` >> fs[] >> rveq
>> `?y. y0 = Tyvar y` by (fs[EVERY_MEM,var_renaming_eq] >> res_tac >> fs[])
>> VAR_EQ_TAC
>> drule_all_then strip_assume_tac var_renaming_MEM_REV_ASSOCD
>> ASM_REWRITE_TAC[]
>> fs[Once (GSYM MEM_MAP_SWAP),SWAP_def]
>> drule var_renaming_MEM_REV_ASSOCD
>> fs[var_renaming_SWAP_IMP]
)
>> drule_then (fs o single) var_renaming_NOT_MEM_REV_ASSOCD_IMP
>> `~MEM (Tyvar x) (MAP SND (MAP SWAP s))` by (
fs[var_renaming_def,rename_bij_def]
>> last_x_assum (mp_tac o CONJUNCT1 o Ho_Rewrite.REWRITE_RULE[EQ_IMP_THM,FORALL_AND_THM,pred_setTheory.EXTENSION])
>> disch_then (dxrule o ONCE_REWRITE_RULE[MONO_NOT_EQ])
>> fs[FST_SND_SWAP,MAP_MAP_o]
)
>> dxrule_then assume_tac var_renaming_SWAP_IMP
>> drule_then (fs o single) var_renaming_NOT_MEM_REV_ASSOCD_IMP
QED
Theorem var_renaming_SWAP_id':
!s t. var_renaming s ⇒
TYPE_SUBST s (TYPE_SUBST (MAP SWAP s) t) = t
Proof
rpt strip_tac
>> dxrule_then assume_tac var_renaming_SWAP_IMP
>> dxrule var_renaming_SWAP_id
>> fs[MAP_MAP_o,SWAP_SWAP_INVOL]
QED
Theorem var_renaming_TYPE_SUBST_SWAP_eq:
!s t t'. var_renaming s ⇒
(TYPE_SUBST s t' = t <=> t' = TYPE_SUBST (MAP SWAP s) t)
Proof
fs[EQ_IMP_THM,FORALL_AND_THM,IMP_CONJ_THM,var_renaming_SWAP_id,var_renaming_SWAP_id']
QED
Theorem var_renaming_Tyvar_imp:
(!s x. var_renaming s ∧
MEM x (MAP FST s) ⇒ ∃a. x = Tyvar a)
/\ (!s x. var_renaming s ∧
MEM x (MAP SND s) ⇒ ∃a. x = Tyvar a)
/\ (!s x. var_renaming s ∧
MEM x s ⇒ ∃a b. x = (Tyvar a,Tyvar b))
Proof
rw[var_renaming_eq,MEM_MAP,EVERY_MEM]
>> first_x_assum (drule_then strip_assume_tac)
>> fs[]
QED
Theorem var_renaming_TYPE_SUBST_Tyvar:
!s m x. var_renaming s
/\ TYPE_SUBST s (Tyvar m) = x
==> ?b. x = Tyvar b
Proof
rw[]
>> Cases_on `MEM (Tyvar m) $ MAP SND s`
>- (
fs[MEM_MAP]
>> rename[`MEM y _`]
>> PairCases_on `y`
>> fs[]
>> rveq
>> drule_all var_renaming_MEM_REV_ASSOCD
>> drule_all_then strip_assume_tac $ cj 3 var_renaming_Tyvar_imp
>> fs[]
)
>> fs[var_renaming_NOT_MEM_REV_ASSOCD_IMP]
QED
Theorem var_renaming_inj:
!s x x'. var_renaming s
/\ TYPE_SUBST s x = TYPE_SUBST s x'
==> x = x'
Proof
gen_tac
>> ho_match_mp_tac type_ind
>> fs[]
>> rw[]
>- (
drule_then (qspec_then `m` assume_tac) var_renaming_TYPE_SUBST_Tyvar
>> Cases_on `x'`
>> rgs[var_renaming_def]
>> drule_then (qspecl_then [`Tyvar m`,`Tyvar m'`] mp_tac) rename_bij_inj
>> fs[]
)
>> Cases_on `x'`
>- (
drule_then (qspec_then `m'` assume_tac) var_renaming_TYPE_SUBST_Tyvar
>> rgs[var_renaming_def]
)
>> rgs[MAP_EQ_EVERY2,EVERY_MEM,LIST_REL_EL_EQN]
>> match_mp_tac LIST_EQ
>> rw[]
>> first_x_assum $ drule_then assume_tac
>> rename[`x < LENGTH _`]
>> `MEM (EL x l) l` by fs[EL_MEM]
>> first_x_assum $ drule_then assume_tac
>> rw[]
QED
Theorem var_renaming_MEM_ineq:
!s x. var_renaming s ∧ MEM x s ⇒ FST x ≠ SND x
Proof
rw[var_renaming_def,rename_bij_def,EVERY_MEM,ELIM_UNCURRY]
QED
Theorem var_renaming_MAP_FST_SND:
!s. var_renaming s
⇒ set (MAP FST s) = set (MAP SND s)
Proof
fs[rename_bij_def,var_renaming_def]
QED
(* TODO remove unused theorem *)
Triviality var_renaming_compose_set:
!r s. var_renaming r ∧ var_renaming s⇒
set (MAP FST (MAP (TYPE_SUBST s ## I) r))
= ({ FST x | MEM x s ∧ MEM (SND x) (MAP FST r) }
∪ (set (MAP FST r) DIFF set (MAP SND s)))
Proof
rw[pred_setTheory.EXTENSION,EQ_IMP_THM,PAIR_MAP_o,o_DEF,MAP_MAP_o]
>- (
qpat_x_assum `MEM _ (MAP _ _)` (strip_assume_tac o REWRITE_RULE[MEM_MAP])
>> fs[var_renaming_eq,EVERY_MEM]
>> rename1`MEM y r`
>> Cases_on `MEM (FST y) (MAP SND s)`
>- (
qpat_x_assum `MEM _ (MAP _ _)` (strip_assume_tac o REWRITE_RULE[MEM_MAP])
>> res_tac
>> rveq >> fs[] >> rveq
>> drule var_renaming_MEM_REV_ASSOCD
>> rw[var_renaming_eq,EVERY_MEM]
>> disj1_tac
>> goal_assum (first_assum o mp_then Any mp_tac)
>> imp_res_tac (Q.ISPEC `FST` MEM_MAP_f)
>> fs[]
)
>> res_tac
>> VAR_EQ_TAC
>> fs[]
>> drule (ONCE_REWRITE_RULE[CONJ_COMM] var_renaming_NOT_MEM_REV_ASSOCD_IMP)
>> rw[var_renaming_eq,EVERY_MEM]
>> imp_res_tac (Q.ISPEC `FST` MEM_MAP_f)
>> fs[]
)
>- (
qpat_x_assum `MEM _ (MAP FST _)` (strip_assume_tac o REWRITE_RULE[MEM_MAP])
>> drule (ONCE_REWRITE_RULE[CONJ_COMM]var_renaming_MEM_TYPE_SUBST)
>> fs[var_renaming_eq,EVERY_MEM]
>> res_tac
>> rveq >> fs[] >> rveq
>> disch_then (drule_then assume_tac)
>> fs[MEM_MAP]
>> goal_assum (first_assum o mp_then Any mp_tac)
>> fs[]
)
>> qpat_x_assum `MEM _ (MAP FST _)` (strip_assume_tac o REWRITE_RULE[MEM_MAP])
>> drule var_renaming_NOT_MEM_REV_ASSOCD_IMP
>> fs[var_renaming_eq,EVERY_MEM]
>> res_tac
>> rveq >> fs[] >> rveq
>> disch_then (drule_then assume_tac)
>> fs[MEM_MAP]
>> goal_assum (first_assum o mp_then Any mp_tac)
>> fs[]
QED
(* TODO remove unused theorem *)
Triviality var_renaming_compose_props:
∀r s. var_renaming s ∧ var_renaming r
⇒ let s = MAP (TYPE_SUBST s ## I) r ++ s
in
(set (MAP FST s) = set (MAP SND s)
∧ EVERY (λ(x,y). ∃a. y = Tyvar a) s)
Proof
REWRITE_TAC[LET_THM]
>> BETA_TAC
>> reverse (rpt strip_tac)
>- (
fs[var_renaming_def,EVERY_MAP]
>> qpat_x_assum `EVERY _ r` mp_tac
>> match_mp_tac (Ho_Rewrite.REWRITE_RULE[PULL_FORALL] EVERY_MONOTONIC)
>> fs[ELIM_UNCURRY]
)
>> drule var_renaming_compose_set
>> disch_then (last_assum o mp_then Any mp_tac)
>> fs[var_renaming_def,EVERY_MAP]
>> fs[rename_bij_def,MAP_MAP_o,o_DEF,PAIR_MAP_THM,ETA_THM]
>> rw[]
>> qmatch_goalsub_abbrev_tac `((C ∪ _) ∪ _) = (A ∪ B)`
>> `C ⊆ B` by (
unabbrev_all_tac
>> qpat_x_assum `set (MAP FST s) = _` (fs o single o GSYM)
>> fs[SUBSET_DEF,PULL_EXISTS,MEM_MAP_f]
)
>> fs[UNION_DIFF_EQ,UNION_IDEMPOT,AC UNION_ASSOC UNION_COMM,SUBSET_UNION_ABSORPTION]
QED
Triviality var_renaming_compose_set_FST_FILTER:
!r s. var_renaming s ∧ var_renaming r
⇒ set (MAP FST (FILTER (λ(x,y). x ≠ y) (MAP (TYPE_SUBST s ## I) r)))
= ({ FST x | ∃a. MEM x s ∧ MEM (SND x,a) r ∧ a ≠ FST x}
∪ (set (MAP FST r) DIFF set (MAP SND s)))
Proof
rw[pred_setTheory.EXTENSION,EQ_IMP_THM,PAIR_MAP_o,o_DEF,MAP_MAP_o]
>- (
qpat_x_assum `MEM _ (MAP _ _)` (strip_assume_tac o REWRITE_RULE[MEM_MAP,FILTER_MAP,o_DEF,MEM_FILTER,ELIM_UNCURRY])
>> fs[var_renaming_eq,EVERY_MEM]
>> rename1`MEM y' r`
>> Cases_on `MEM (FST y') (MAP SND s)`
>- (
qpat_x_assum `MEM _ (MAP _ _)` (strip_assume_tac o REWRITE_RULE[MEM_MAP])
>> res_tac
>> gvs[]
>> drule var_renaming_MEM_REV_ASSOCD
>> rw[var_renaming_eq,EVERY_MEM,PULL_EXISTS]
>> disj1_tac
>> goal_assum (first_assum o mp_then Any mp_tac)
>> fs[]
>> goal_assum (first_assum o mp_then Any mp_tac)
>> fs[]
)
>> res_tac
>> VAR_EQ_TAC
>> fs[]
>> drule (ONCE_REWRITE_RULE[CONJ_COMM] var_renaming_NOT_MEM_REV_ASSOCD_IMP)
>> rw[var_renaming_eq,EVERY_MEM]
>> imp_res_tac (Q.ISPEC `FST` MEM_MAP_f)
>> fs[]
)
>- (
drule (ONCE_REWRITE_RULE[CONJ_COMM]var_renaming_MEM_TYPE_SUBST)
>> qpat_x_assum `var_renaming r` (fn x =>
drule (ONCE_REWRITE_RULE[CONJ_COMM]var_renaming_MEM_TYPE_SUBST)
>> assume_tac x
)
>> fs[var_renaming_eq,EVERY_MEM]
>> res_tac
>> gvs[]
>> rpt (disch_then (drule_then assume_tac))
>> rw[MEM_MAP,MEM_FILTER,FILTER_MAP,o_DEF,PULL_EXISTS,ELIM_UNCURRY]
>> goal_assum (first_assum o mp_then Any mp_tac)
>> fs[]
)
>> qpat_x_assum `MEM _ (MAP FST _)` (strip_assume_tac o REWRITE_RULE[MEM_MAP])
>> qpat_x_assum `var_renaming s` assume_tac
>> drule var_renaming_NOT_MEM_REV_ASSOCD_IMP
>> fs[var_renaming_eq,EVERY_MEM]
>> res_tac
>> gvs[]
>> imp_res_tac (REWRITE_RULE[EVERY_MEM] (el 2 (CONJUNCTS rename_bij_def_imps)))
>> disch_then (drule_then assume_tac)
>> rw[MEM_MAP,MEM_FILTER,FILTER_MAP,o_DEF,PULL_EXISTS,ELIM_UNCURRY]
>> goal_assum (first_assum o mp_then Any mp_tac)
>> fs[ELIM_UNCURRY]
QED
Triviality var_renaming_compose_set_SND_FILTER:
!r s. var_renaming s ∧ var_renaming r
⇒ set (MAP SND (FILTER (λ(x,y). x ≠ y) (MAP (TYPE_SUBST s ## I) r)))
= { SND x | MEM x r ∧ ¬MEM (SWAP x) s}
Proof
rw[pred_setTheory.EXTENSION,EQ_IMP_THM,PAIR_MAP_o,o_DEF,MAP_MAP_o,SWAP_def]
>- (
qpat_x_assum `MEM _ (MAP _ _)` (strip_assume_tac o REWRITE_RULE[MEM_MAP,FILTER_MAP,o_DEF,MEM_FILTER,ELIM_UNCURRY])
>> gvs[ELIM_UNCURRY]
>> goal_assum (first_assum o mp_then Any mp_tac)
>> rename1`MEM y' r`
>> Cases_on `MEM (FST y') (MAP SND s)`
>- (
CCONTR_TAC
>> qpat_x_assum `MEM _ (MAP _ _)` (strip_assume_tac o REWRITE_RULE[MEM_MAP])
>> qpat_x_assum `var_renaming s` assume_tac
>> drule (ONCE_REWRITE_RULE[CONJ_COMM]var_renaming_MEM_REV_ASSOCD)
>> fs[var_renaming_eq,EVERY_MEM]
>> res_tac
>> gvs[]
>> goal_assum imp_res_tac
)
>> qpat_x_assum `var_renaming s` assume_tac
>> drule var_renaming_NOT_MEM_REV_ASSOCD_IMP
>> fs[var_renaming_eq,EVERY_MEM]
>> res_tac
>> gvs[]
>> disch_then (drule_then assume_tac)
>> CCONTR_TAC
>> fs[]
>> imp_res_tac (Q.ISPEC `SND` MEM_MAP_f)
>> fs[]
)
>> rw[MEM_MAP,MEM_FILTER,FILTER_MAP,o_DEF,PULL_EXISTS,ELIM_UNCURRY]
>> goal_assum (first_assum o mp_then Any mp_tac)
>> rename1`MEM x' r`
>> Cases_on `MEM (FST x') (MAP SND s)`
>- (
CCONTR_TAC
>> qpat_x_assum `var_renaming s` assume_tac
>> drule (ONCE_REWRITE_RULE[CONJ_COMM]var_renaming_MEM_REV_ASSOCD)
>> fs[var_renaming_eq,EVERY_MEM,MEM_MAP]
>> res_tac
>> gvs[]
>> goal_assum imp_res_tac
>> fs[rename_bij_def,EVERY_MEM]
)
>> qpat_x_assum `var_renaming s` assume_tac
>> drule var_renaming_NOT_MEM_REV_ASSOCD_IMP
>> fs[var_renaming_eq,EVERY_MEM]
>> imp_res_tac (REWRITE_RULE[EVERY_MEM] (el 2 (CONJUNCTS rename_bij_def_imps)))
>> res_tac
>> gvs[ELIM_UNCURRY]
QED
Theorem var_renaming_clean_tysubst_eq:
!s. var_renaming s ⇒ clean_tysubst s = s
Proof
rw[rename_bij_def,var_renaming_def]
>> match_mp_tac clean_tysubst_id
>> fs[LAMBDA_PROD]
QED
(*
The claim needs clean_tysubst.
Counterexample: r = (a x)(b c), s = (b x), s o r = (a b c x)
*)
Theorem var_renaming_compose:
∀r s. var_renaming s ∧ var_renaming r
⇒ var_renaming (clean_tysubst (MAP (TYPE_SUBST s ## I) r ++ s))
Proof
rpt strip_tac
>> reverse $ rw[var_renaming_def,rename_bij_def,clean_tysubst_prop]
>- (
qmatch_goalsub_abbrev_tac `EVERY _`
>> qmatch_goalsub_abbrev_tac `clean_tysubst sor`
>> qspec_then `sor` mp_tac $ cj 2 clean_tysubst_prop
>> fs[ELIM_UNCURRY]
)
>> qmatch_goalsub_abbrev_tac`sr ++ s`
>> rw[clean_tysubst_APPEND,FORALL_AND_THM,var_renaming_clean_tysubst_eq]
>> `MAP SND sr = MAP SND r` by (
fs[Abbr`sr`,MAP_MAP_o,o_DEF]
>> SIMP_TAC(std_ss ++ ETA_ss)[]
)
>> `ALL_DISTINCT (MAP SND sr)` by fs[var_renaming_def,rename_bij_def]
>> dxrule clean_tysubst_FILTER_eq
>> impl_tac
>- (
qabbrev_tac `P = λx. ?a. x = Tyvar a`
>> qmatch_goalsub_abbrev_tac `EVERY P'`
>> `P' = P o SND` by fs[Abbr`P`,Abbr`P'`,o_DEF]
>> VAR_EQ_TAC
>> REWRITE_TAC[GSYM EVERY_MAP,o_DEF]
>> fs[Abbr`P`,var_renaming_def]
>> fs[LAMBDA_PROD,EVERY_MAP]
)
>> disch_then (REWRITE_TAC o single)
>> qabbrev_tac `P = λx. ~MEM x (MAP SND r)`
>> qmatch_goalsub_abbrev_tac `FILTER P' s`
>> `P' = P o SND` by fs[Abbr`P`,Abbr`P'`,o_DEF]
>> VAR_EQ_TAC
>> qpat_x_assum `_ = P o SND` kall_tac
>> rw[var_renaming_compose_set_SND_FILTER,var_renaming_compose_set_FST_FILTER,Abbr`sr`]
>> qpat_x_assum `_ = _` kall_tac
>> rw[ELIM_UNCURRY,SWAP_def,EQ_IMP_THM,pred_setTheory.EXTENSION]
>> rw[DISJ_EQ_IMP,PULL_FORALL]
>> fs[FORALL_AND_THM,AND_IMP_INTRO]
>- (
fs[MEM_FILTER,GSYM FILTER_MAP,Abbr`P`]
>> reverse conj_tac
>- (
imp_res_tac (Q.ISPEC `FST` MEM_MAP_f)
>> fs[var_renaming_def]
>> imp_res_tac (REWRITE_RULE[EVERY_MEM] (CONJUNCT1 rename_bij_def_imps))
>> fs[EQ_IMP_THM,pred_setTheory.EXTENSION,FORALL_AND_THM,IMP_CONJ_THM]
)
>> CCONTR_TAC
>> fs[MEM_MAP,EVERY_MEM,var_renaming_def]
>> first_x_assum (drule_all_then assume_tac)
>> imp_res_tac rename_bij_ALL_DISTINCT_FST
>> rpt (dxrule_then (dxrule_then assume_tac) ALL_DISTINCT_FST_MEMs)
>> rename1`MEM x' s` >> PairCases_on`x'`
>> rename1`MEM y r` >> PairCases_on`y`
>> gvs[]
>> metis_tac[]
)
>- (
fs[var_renaming_def]
>> imp_res_tac (REWRITE_RULE[EVERY_MEM] (CONJUNCT1 rename_bij_def_imps))
>> fs[EQ_IMP_THM,pred_setTheory.EXTENSION,FORALL_AND_THM,IMP_CONJ_THM]
>> first_x_assum (dxrule_then (strip_assume_tac o REWRITE_RULE[MEM_MAP]))
>> first_x_assum ((dxrule_then assume_tac) o ONCE_REWRITE_RULE[MONO_NOT_EQ])
>> qpat_x_assum `!x. _ ∧ _ ⇒ _` imp_res_tac
>> imp_res_tac (Q.ISPEC `FST` MEM_MAP_f)
>> rfs[]
)
>- (
fs[MEM_FILTER,GSYM FILTER_MAP,Abbr`P`]
>> qpat_x_assum `MEM _ (MAP _ _)` (strip_assume_tac o REWRITE_RULE[Once MEM_MAP,MEM_FILTER,o_DEF])
>> gvs[ELIM_UNCURRY]
>> reverse conj_tac
>- (
imp_res_tac (Q.ISPEC `FST` MEM_MAP_f)
>> fs[var_renaming_def]
>> imp_res_tac (REWRITE_RULE[EVERY_MEM] (CONJUNCT1 rename_bij_def_imps))
>> fs[EQ_IMP_THM,pred_setTheory.EXTENSION,FORALL_AND_THM,IMP_CONJ_THM]
)
>> goal_assum (strip_assume_tac o REWRITE_RULE[MEM_MAP])
>> rename1`MEM y' r` >> PairCases_on`y'`
>> rename1`MEM y s` >> PairCases_on`y`
>> gvs[]
>> qpat_x_assum `!x. _` imp_res_tac