-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathcandle_kernel_valsScript.sml
1705 lines (1564 loc) · 52.8 KB
/
candle_kernel_valsScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
Theorems about values from the Candle kernel program
*)
open preamble;
open ml_translatorTheory ml_hol_kernel_funsProgTheory candle_kernelProgTheory;
open semanticPrimitivesTheory semanticPrimitivesPropsTheory
namespacePropsTheory evaluatePropsTheory ast_extrasTheory
holKernelProofTheory evaluateTheory permsTheory;
val _ = new_theory "candle_kernel_vals";
val _ = (max_print_depth := 10);
(* -------------------------------------------------------------------------
* 'inferred' relation
* ------------------------------------------------------------------------- *)
Definition kernel_funs_def:
kernel_funs = {
(* this list attempts to match the functions given in:
https://github.com/jrh13/hol-light/blob/master/fusion.ml *)
types_v;
get_type_arity_v;
call_new_type_v;
mk_type_v;
mk_vartype_v;
dest_type_v;
dest_vartype_v;
is_type_v;
is_vartype_v;
call_tyvars_v;
call_type_subst_v;
constants_v;
get_const_type_v;
new_constant_v;
call_type_of_v;
is_var_v;
is_const_v;
is_abs_v;
is_comb_v;
mk_var_v;
mk_const_v;
mk_abs_v;
mk_comb_v;
dest_var_v;
dest_const_v;
dest_comb_v;
dest_abs_v;
call_frees_v;
freesl_v;
call_freesin_v;
call_vfree_in_v;
call_type_vars_in_term_v;
call_variant_v;
vsubst_v;
inst_v;
rand_v;
rator_v;
dest_eq_v;
dest_thm_v;
hyp_v;
concl_v;
refl_v;
trans_v;
mk_comb_1_v;
abs_v;
beta_v;
assume_v;
eq_mp_v;
deduct_antisym_rule_v;
inst_type_v;
inst_1_v;
axioms_v;
new_axiom_v;
new_basic_definition_v;
new_basic_type_definition_v;
new_specification_v;
Kernel_print_thm_v;
(* Compute additions *)
compute_add_v;
compute_v;
}
End
Theorem kernel_funs_v_def =
kernel_funs_def |> concl |> rand |> find_terms is_const
|> filter (fn tm => not (mem (fst (dest_const tm)) ["INSERT","EMPTY"]))
|> map (fn c => fst (dest_const c) ^ "_def")
|> map (fn defn =>
DB.find defn
|> Lib.pluck (fn ((_,nm),_) => nm = defn)
|> #1 |> #2 |> #1)
|> curry (op @) [constants_v_def,abs_v_def]
|> LIST_CONJ;
Theorem abs_v_def[compute] = abs_v_def;
Definition kernel_locs_def:
kernel_locs =
{ l | Loc T l ∈ { the_type_constants
; the_term_constants
; the_axioms
; the_context}}
End
Theorem IN_kernel_locs:
n ∈ kernel_locs ⇔
Loc T n = the_type_constants ∨
Loc T n = the_term_constants ∨
Loc T n = the_axioms ∨
Loc T n = the_context
Proof
fs [kernel_locs_def]
QED
val context_refs_defs = the_context_def |> concl |> find_terms (listSyntax.is_length)
|> map (dest_thy_const o listSyntax.dest_length)
|> map (fn cn => fetch (#Thy cn) (#Name cn ^ "_def"))
Theorem refs_defs = LIST_CONJ (cv_t_refs_def :: cv_f_refs_def :: context_refs_defs)
Theorem kernel_locs = IN_kernel_locs |>
SIMP_RULE (srw_ss()) [the_type_constants_def,
the_term_constants_def,
the_axioms_def,
the_context_def,
refs_defs]
Definition kernel_perms_def:
kernel_perms = IMAGE RefMention kernel_locs ∪ {RefUpdate}
End
fun get_constructors th =
th |> concl |> find_terms (can $ match_term “TypeStamp _ _”)
|> map (rand o rator)
|> pred_setSyntax.mk_set;
Overload type_ctors_set[local] = (get_constructors TYPE_TYPE_def);
Overload term_ctors_set[local] = (get_constructors TERM_TYPE_def);
Overload thm_ctors_set[local] = (get_constructors THM_TYPE_def);
Definition kernel_ctors_def:
kernel_ctors = type_ctors_set ∪
term_ctors_set ∪
thm_ctors_set
End
fun get_typestamp_num th =
th |> concl |> find_term (can $ match_term “TypeStamp _ _”) |> rand;
Overload type_stamp_n = (get_typestamp_num TYPE_TYPE_def);
Overload term_stamp_n = (get_typestamp_num TERM_TYPE_def);
Overload thm_stamp_n = (get_typestamp_num THM_TYPE_def);
Definition kernel_types_def:
kernel_types = { type_stamp_n; term_stamp_n; thm_stamp_n } : num set
End
Inductive inferred:
[~KernelFuns:]
(∀ctxt f.
f ∈ kernel_funs ⇒
inferred ctxt f)
[~TYPE:]
(∀ctxt ty v.
TYPE ctxt ty ∧
TYPE_TYPE ty v ⇒
inferred ctxt v)
[~TERM:]
(∀ctxt tm v.
TERM ctxt tm ∧
TERM_TYPE tm v ⇒
inferred ctxt v)
[~THM:]
(∀ctxt th v.
THM ctxt th ∧
THM_TYPE th v ⇒
inferred ctxt v)
End
Definition kernel_ffi_def:
kernel_ffi = "kernel_ffi"
End
Definition thm2bytes_def:
thm2bytes ctxt th =
MAP (n2w:num->word8) (MAP ORD (explode (thm_to_string ctxt th)))
End
Definition ok_event_def:
ok_event (IO_event n out y) ⇔
n = ExtCall kernel_ffi ⇒
∃ctxt th. THM ctxt th ∧
thm2bytes ctxt th = out
End
(* -------------------------------------------------------------------------
* Versions of TERM, THM that only match the outermost structure
* ------------------------------------------------------------------------- *)
Definition TYPE_TYPE_HEAD_def:
TYPE_TYPE_HEAD v ⇔
∃s vs. v = Conv (SOME (TypeStamp s type_stamp_n)) vs ∧
s ∈ type_ctors_set
End
Definition TERM_TYPE_HEAD_def:
TERM_TYPE_HEAD v ⇔
∃s vs. v = Conv (SOME (TypeStamp s term_stamp_n)) vs ∧
s ∈ term_ctors_set
End
Definition THM_TYPE_HEAD_def:
THM_TYPE_HEAD v ⇔
∃s vs. v = Conv (SOME (TypeStamp s thm_stamp_n)) vs ∧
s ∈ thm_ctors_set
End
Theorem THM_TYPE_HEAD_def[allow_rebind] = SIMP_RULE list_ss [] THM_TYPE_HEAD_def;
Definition LIST_TYPE_HEAD_def:
LIST_TYPE_HEAD h v = ∃l:unit list. LIST_TYPE (K h) l v
End
Definition PAIR_TYPE_HEAD_def:
PAIR_TYPE_HEAD h1 h2 v = PAIR_TYPE (K h1) (K h2) ((),()) v
End
Definition STRING_TYPE_HEAD_def:
STRING_TYPE_HEAD v ⇔ ∃s. STRING_TYPE s v
End
Definition INT_HEAD_def:
INT_HEAD v ⇔ ∃n. INT n v
End
(* -------------------------------------------------------------------------
* THM, TERM, TYPE lemmas
* ------------------------------------------------------------------------- *)
Theorem kernel_funs_inferred[simp]:
(∀ty. v ∈ kernel_funs ⇒ ¬TYPE_TYPE ty v) ∧
(∀tm. v ∈ kernel_funs ⇒ ¬TERM_TYPE tm v) ∧
(∀th. v ∈ kernel_funs ⇒ ¬THM_TYPE th v)
Proof
rpt conj_tac \\ Cases
\\ fs [TYPE_TYPE_def, TERM_TYPE_def, THM_TYPE_def]
\\ rw [] \\ qsuff_tac ‘F’ \\ fs []
\\ pop_assum mp_tac \\ fs []
\\ rewrite_tac [kernel_funs_def,IN_INSERT,NOT_IN_EMPTY]
\\ once_rewrite_tac [kernel_funs_v_def]
\\ EVAL_TAC
QED
Theorem TYPE_from_TYPE_TYPE:
inferred ctxt v ∧
TYPE_TYPE ty v ⇒
TYPE ctxt ty
Proof
rw [Once inferred_cases] \\ gs []
>~ [‘THM ctxt th’] >- (
Cases_on ‘th’ \\ gs [THM_TYPE_def]
\\ Cases_on ‘ty’ \\ gs [TYPE_TYPE_def])
>~ [‘TERM ctxt tm’] >- (
Cases_on ‘tm’ \\ gs [TERM_TYPE_def]
\\ Cases_on ‘ty’ \\ gs [TYPE_TYPE_def])
\\ assume_tac EqualityType_TYPE_TYPE
\\ gs [EqualityType_def]
\\ qpat_x_assum ‘∀a b c d. _ ⇒ (_ ⇔ _)’ (dxrule_then drule) \\ gs []
QED
Theorem TERM_from_TERM_TYPE:
inferred ctxt v ∧
TERM_TYPE tm v ⇒
TERM ctxt tm
Proof
rw [Once inferred_cases] \\ gs []
>~ [‘THM ctxt th’] >- (
Cases_on ‘th’ \\ gs [THM_TYPE_def]
\\ Cases_on ‘tm’ \\ gs [TERM_TYPE_def])
>~ [‘TYPE ctxt ty’] >- (
Cases_on ‘ty’ \\ gs [TYPE_TYPE_def]
\\ Cases_on ‘tm’ \\ gs [TERM_TYPE_def])
\\ assume_tac EqualityType_TERM_TYPE
\\ gs [EqualityType_def]
\\ qpat_x_assum ‘∀a b c d. _ ⇒ (_ ⇔ _)’ (dxrule_then drule) \\ gs []
QED
Theorem THM_from_THM_TYPE:
inferred ctxt v ∧
THM_TYPE th v ⇒
THM ctxt th
Proof
rw [Once inferred_cases] \\ gs []
>~ [‘TYPE ctxt ty’] >- (
Cases_on ‘ty’ \\ gs [TYPE_TYPE_def]
\\ Cases_on ‘th’ \\ gs [THM_TYPE_def])
>~ [‘TERM ctxt tm’] >- (
Cases_on ‘tm’ \\ gs [TERM_TYPE_def]
\\ Cases_on ‘th’ \\ gs [THM_TYPE_def])
\\ assume_tac EqualityType_THM_TYPE
\\ gs [EqualityType_def]
\\ qpat_x_assum ‘∀a b c d. _ ⇒ (_ ⇔ _)’ (dxrule_then drule) \\ gs []
QED
(* -------------------------------------------------------------------------
* Theorems applying kernel functions to *any* arguments (incl. wrong type)
* ------------------------------------------------------------------------- *)
val s = “s:α semanticPrimitives$state”
val safe_error_goal =
“∃k. s' = ((s:α semanticPrimitives$state) with clock := k) ∧
(res = Rerr (Rabort Rtype_error) ∨
res = Rerr (Rraise bind_exn_v) ∨
res = Rerr (Rabort Rtimeout_error)
:(semanticPrimitives$v list, semanticPrimitives$v)
semanticPrimitives$result)”
Theorem do_opapp_clos:
do_opapp [Closure env v e; argv] = SOME (env1,e1) ⇔
env with v := nsBind v argv env.v = env1 ∧ e = e1
Proof
fs [do_opapp_def]
QED
Theorem do_partial_app_clos:
do_partial_app (Closure env v (Fun n e)) argv = SOME g ⇔
Closure (env with v := nsBind v argv env.v) n e = g
Proof
fs [do_partial_app_def]
QED
Triviality same_clock_exists:
(∃k. s = s with clock := k) = T ∧
(∃k. s with clock := k' = s with clock := k) = T
Proof
fs [state_component_equality]
QED
Theorem evaluate_unit_check:
evaluate ^s (env with v := nsBind v w env1)
[Mat (Var (Short v)) [(Pcon NONE [],ee)]] = (s',res) ⇒
^safe_error_goal ∨ UNIT_TYPE () w
Proof
csimp [evaluate_def,same_ctor_def,pmatch_def,do_con_check_def]
\\ rw [AllCaseEqs(),same_clock_exists]
\\ Cases_on ‘w’ \\ gvs [pmatch_def]
\\ rename [‘Conv oo ll’] \\ Cases_on ‘oo’ \\ gvs [pmatch_def,AllCaseEqs()]
QED
Theorem evaluate_str_check:
evaluate ^s env
[Let NONE (App Strlen [Var (Short v)]) ee] = (s',res) ∧
nsLookup env.v (Short v) = SOME w ⇒
^safe_error_goal ∨ STRING_TYPE_HEAD w ∧ evaluate ^s env [ee] = (s',res)
Proof
fs [evaluate_def,same_ctor_def,pmatch_def,do_con_check_def] \\ csimp []
\\ fs [do_app_def,AllCaseEqs()] \\ strip_tac \\ gvs [same_clock_exists]
\\ fs [STRING_TYPE_HEAD_def,STRING_TYPE_def,namespaceTheory.nsOptBind_def]
\\ last_x_assum (rewrite_tac o single o GSYM)
\\ disj2_tac \\ rpt (AP_THM_TAC ORELSE AP_TERM_TAC)
\\ fs [state_component_equality]
QED
Theorem evaluate_ty_check:
evaluate ^s env
[Let NONE
(Mat (Var (Short v))
[(Pcon (SOME (Short "Tyvar")) [Pvar a1], Con NONE []);
(Pcon (SOME (Short "Tyapp")) [Pvar a3; Pvar a4], Con NONE [])]) ee] = (s',res) ∧
nsLookup env.c (Short "Tyvar") = SOME (1,TypeStamp "Tyvar" type_stamp_n) ∧
nsLookup env.c (Short "Tyapp") = SOME (2,TypeStamp "Tyapp" type_stamp_n) ∧
nsLookup env.v (Short v) = SOME w ⇒
^safe_error_goal ∨ TYPE_TYPE_HEAD w ∧ evaluate ^s env [ee] = (s',res)
Proof
fs [evaluate_def,same_ctor_def,pmatch_def,do_con_check_def] \\ csimp []
\\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ rpt strip_tac
\\ gvs [AllCaseEqs(),LENGTH_EQ_NUM_compute,same_clock_exists]
\\ Cases_on ‘w’ \\ gvs [pmatch_def]
\\ rename [‘Conv oo ll’] \\ Cases_on ‘oo’ \\ gvs [pmatch_def,AllCaseEqs()]
\\ gvs [AllCaseEqs(),LENGTH_EQ_NUM_compute]
\\ rpt strip_tac \\ gvs [same_ctor_def,pmatch_def]
\\ fs [TYPE_TYPE_HEAD_def]
\\ rpt (pop_assum mp_tac)
\\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ fs [namespaceTheory.nsOptBind_def]
QED
Theorem evaluate_tm_check:
evaluate ^s env
[Let NONE
(Mat (Var (Short v))
[(Pcon (SOME (Short "Var")) [Pvar a1; Pvar a2], Con NONE []);
(Pcon (SOME (Short "Const")) [Pvar a3; Pvar a4], Con NONE []);
(Pcon (SOME (Short "Comb")) [Pvar a5; Pvar a6], Con NONE []);
(Pcon (SOME (Short "Abs")) [Pvar a7; Pvar a8], Con NONE [])]) ee] = (s',res) ∧
nsLookup env.c (Short "Var") = SOME (2,TypeStamp "Var" term_stamp_n) ∧
nsLookup env.c (Short "Const") = SOME (2,TypeStamp "Const" term_stamp_n) ∧
nsLookup env.c (Short "Comb") = SOME (2,TypeStamp "Comb" term_stamp_n) ∧
nsLookup env.c (Short "Abs") = SOME (2,TypeStamp "Abs" term_stamp_n) ∧
nsLookup env.v (Short v) = SOME w ⇒
^safe_error_goal ∨ TERM_TYPE_HEAD w ∧ evaluate ^s env [ee] = (s',res)
Proof
fs [evaluate_def,same_ctor_def,pmatch_def,do_con_check_def] \\ csimp []
\\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ rpt strip_tac
\\ gvs [AllCaseEqs(),LENGTH_EQ_NUM_compute,same_clock_exists]
\\ Cases_on ‘w’ \\ gvs [pmatch_def]
\\ rename [‘Conv oo ll’] \\ Cases_on ‘oo’ \\ gvs [pmatch_def,AllCaseEqs()]
\\ gvs [AllCaseEqs(),LENGTH_EQ_NUM_compute]
\\ rpt strip_tac \\ gvs [same_ctor_def,pmatch_def]
\\ fs [TERM_TYPE_HEAD_def]
\\ rpt (pop_assum mp_tac)
\\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ fs [namespaceTheory.nsOptBind_def]
QED
Theorem evaluate_thm_check:
evaluate ^s env
[Let NONE
(Mat (Var (Short v))
[(Pcon (SOME (Short "Sequent")) [Pvar a1; Pvar a2], Con NONE [])]) ee] =
(s',res) ∧
nsLookup env.c (Short "Sequent") = SOME (2,TypeStamp "Sequent" thm_stamp_n) ∧
nsLookup env.v (Short v) = SOME w ⇒
^safe_error_goal ∨ THM_TYPE_HEAD w ∧ evaluate ^s env [ee] = (s',res)
Proof
fs [evaluate_def,same_ctor_def,pmatch_def,do_con_check_def] \\ csimp []
\\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ rpt strip_tac
\\ gvs [AllCaseEqs(),LENGTH_EQ_NUM_compute,same_clock_exists]
\\ Cases_on ‘w’ \\ gvs [pmatch_def]
\\ rename [‘Conv oo ll’] \\ Cases_on ‘oo’ \\ gvs [pmatch_def,AllCaseEqs()]
\\ gvs [AllCaseEqs(),LENGTH_EQ_NUM_compute]
\\ rpt strip_tac \\ gvs [same_ctor_def,pmatch_def]
\\ fs [THM_TYPE_HEAD_def]
\\ rpt (pop_assum mp_tac)
\\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ fs [namespaceTheory.nsOptBind_def]
QED
Theorem evaluate_mat_pair:
evaluate ^s env
[Mat (Var (Short v)) [(Pcon NONE [Pvar a1; Pvar a2], ee)]] = (s',res) ∧
nsLookup env.v (Short v) = SOME w ⇒
^safe_error_goal ∨
∃v1 v2.
w = Conv NONE [v1;v2] ∧
evaluate s (env with v := nsBind a2 v2 (nsBind a1 v1 env.v)) [ee] = (s',res)
Proof
fs [evaluate_def,same_ctor_def,pmatch_def,do_con_check_def] \\ csimp []
\\ rpt strip_tac
\\ gvs [AllCaseEqs(),LENGTH_EQ_NUM_compute,same_clock_exists]
\\ Cases_on ‘w’ \\ gvs [pmatch_def]
\\ rename [‘Conv oo ll’] \\ Cases_on ‘oo’ \\ gvs [pmatch_def,AllCaseEqs()]
\\ gvs [AllCaseEqs(),LENGTH_EQ_NUM_compute,pmatch_def]
QED
Theorem evaluate_mat_thm:
evaluate ^s env
[Mat (Var (Short v))
[(Pcon (SOME (Short "Sequent")) [Pvar a1; Pvar a2], ee)]] = (s',res) ∧
nsLookup env.c (Short "Sequent") = SOME (2,TypeStamp "Sequent" thm_stamp_n) ∧
nsLookup env.v (Short v) = SOME w ⇒
^safe_error_goal ∨
∃v1 v2.
THM_TYPE_HEAD w ∧
evaluate ^s (env with v := nsBind a2 v2 (nsBind a1 v1 env.v)) [ee] = (s',res)
Proof
fs [evaluate_def,same_ctor_def,pmatch_def,do_con_check_def] \\ csimp []
\\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ rpt strip_tac
\\ gvs [AllCaseEqs(),LENGTH_EQ_NUM_compute,same_clock_exists]
\\ Cases_on ‘w’ \\ gvs [pmatch_def]
\\ rename [‘Conv oo ll’] \\ Cases_on ‘oo’ \\ gvs [pmatch_def,AllCaseEqs()]
\\ gvs [AllCaseEqs(),LENGTH_EQ_NUM_compute]
\\ rpt strip_tac \\ gvs [same_ctor_def,pmatch_def]
\\ fs [THM_TYPE_HEAD_def]
\\ rpt (pop_assum mp_tac)
\\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ fs [namespaceTheory.nsOptBind_def] \\ rpt strip_tac \\ disj2_tac
\\ first_x_assum $ irule_at Any
QED
Theorem check_tm_head:
∀v s.
∃env e s' res.
do_opapp [check_tm_v; v] = SOME (env,e) ∧
evaluate (dec_clock ^s) env [e] = (s',res) ∧
(^safe_error_goal ∨
∃k z. s' = s with clock := k ∧ res = Rval [z] ∧
LIST_TYPE_HEAD TERM_TYPE_HEAD v)
Proof
strip_tac \\ completeInduct_on ‘v_size v’
\\ rpt strip_tac \\ gvs [PULL_FORALL,AND_IMP_INTRO]
\\ rename [‘do_opapp [_; v]’]
\\ simp [check_tm_v_def]
\\ simp [do_opapp_def]
\\ once_rewrite_tac [find_recfun_def] \\ fs []
\\ simp_tac (srw_ss()) [Once evaluate_def]
\\ simp_tac (srw_ss()) [Once evaluate_def]
\\ rpt strip_tac
\\ reverse IF_CASES_TAC \\ fs []
THEN1 fs [dec_clock_def,same_clock_exists]
\\ simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ simp_tac (srw_ss()) [pmatch_def]
\\ reverse CASE_TAC \\ fs []
\\ TRY (fs [dec_clock_def,same_clock_exists] \\ NO_TAC)
\\ pop_assum mp_tac
\\ Cases_on ‘v’ \\ simp_tac (srw_ss()) [pmatch_def]
\\ Cases_on ‘o'’ \\ simp_tac (srw_ss()) [pmatch_def,AllCaseEqs(),same_ctor_def]
\\ strip_tac \\ fs []
THEN1
(rpt var_eq_tac
\\ simp_tac (srw_ss()) [evaluate_def]
\\ rpt (CASE_TAC \\ gvs [dec_clock_def,same_clock_exists,GSYM PULL_EXISTS])
\\ rpt (pop_assum mp_tac)
\\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ rpt strip_tac \\ gvs []
\\ fs [LIST_TYPE_HEAD_def]
\\ qexists_tac ‘[]’
\\ fs [LIST_TYPE_def])
\\ simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ CASE_TAC \\ fs []
\\ TRY (fs [dec_clock_def,same_clock_exists] \\ NO_TAC)
THEN1
(simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ simp_tac (srw_ss()) [pmatch_def,dec_clock_def,same_clock_exists])
\\ pop_assum mp_tac \\ simp_tac (srw_ss()) [pmatch_def,AllCaseEqs(),same_ctor_def]
\\ strip_tac \\ fs []
\\ gvs [LENGTH_EQ_NUM_compute,pmatch_def]
\\ qmatch_goalsub_abbrev_tac ‘xx = (_,_)’
\\ ‘∃res s. xx = (s,res)’ by metis_tac [PAIR]
\\ fs [Abbr ‘xx’]
\\ drule evaluate_tm_check
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ strip_tac \\ gvs [same_clock_exists]
\\ pop_assum mp_tac
\\ simp [Once evaluate_def]
\\ simp [Once evaluate_def]
\\ simp [Once evaluate_def]
\\ simp [Once evaluate_def]
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ fs [build_rec_env_def]
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ fs [GSYM check_tm_v_def]
\\ rename [‘do_opapp [_; h_tail]’]
\\ last_x_assum (qspecl_then [‘h_tail’,‘dec_clock s’] mp_tac)
\\ impl_tac THEN1 fs [v_size_def]
\\ strip_tac \\ fs []
\\ rw [] \\ fs [dec_clock_def,same_clock_exists,GSYM PULL_EXISTS]
\\ fs [LIST_TYPE_HEAD_def]
\\ qexists_tac ‘()::l’
\\ fs [LIST_TYPE_def,PAIR_TYPE_HEAD_def,PAIR_TYPE_def]
\\ rpt (pop_assum mp_tac)
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
QED
Theorem check_ty_head:
∀v s.
∃env e s' res.
do_opapp [check_ty_v; v] = SOME (env,e) ∧
evaluate (dec_clock ^s) env [e] = (s',res) ∧
(^safe_error_goal ∨
∃k z. s' = s with clock := k ∧ res = Rval [z] ∧
LIST_TYPE_HEAD TYPE_TYPE_HEAD v)
Proof
strip_tac \\ completeInduct_on ‘v_size v’
\\ rpt strip_tac \\ gvs [PULL_FORALL,AND_IMP_INTRO]
\\ rename [‘do_opapp [_; v]’]
\\ simp [check_ty_v_def]
\\ simp [do_opapp_def]
\\ once_rewrite_tac [find_recfun_def] \\ fs []
\\ simp_tac (srw_ss()) [Once evaluate_def]
\\ simp_tac (srw_ss()) [Once evaluate_def]
\\ rpt strip_tac
\\ reverse IF_CASES_TAC \\ fs []
THEN1 fs [dec_clock_def,same_clock_exists]
\\ simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ simp_tac (srw_ss()) [pmatch_def]
\\ reverse CASE_TAC \\ fs []
\\ TRY (fs [dec_clock_def,same_clock_exists] \\ NO_TAC)
\\ pop_assum mp_tac
\\ Cases_on ‘v’ \\ simp_tac (srw_ss()) [pmatch_def]
\\ Cases_on ‘o'’ \\ simp_tac (srw_ss()) [pmatch_def,AllCaseEqs(),same_ctor_def]
\\ strip_tac \\ fs []
THEN1
(rpt var_eq_tac
\\ simp_tac (srw_ss()) [evaluate_def]
\\ rpt (CASE_TAC \\ gvs [dec_clock_def,same_clock_exists,GSYM PULL_EXISTS])
\\ rpt (pop_assum mp_tac)
\\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ rpt strip_tac \\ gvs []
\\ fs [LIST_TYPE_HEAD_def]
\\ qexists_tac ‘[]’
\\ fs [LIST_TYPE_def])
\\ simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ CASE_TAC \\ fs []
\\ TRY (fs [dec_clock_def,same_clock_exists] \\ NO_TAC)
THEN1
(simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ simp_tac (srw_ss()) [pmatch_def,dec_clock_def,same_clock_exists])
\\ pop_assum mp_tac \\ simp_tac (srw_ss()) [pmatch_def,AllCaseEqs(),same_ctor_def]
\\ strip_tac \\ fs []
\\ gvs [LENGTH_EQ_NUM_compute,pmatch_def]
\\ qmatch_goalsub_abbrev_tac ‘xx = (_,_)’
\\ ‘∃res s. xx = (s,res)’ by metis_tac [PAIR]
\\ fs [Abbr ‘xx’]
\\ drule evaluate_ty_check
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ strip_tac \\ gvs [same_clock_exists]
\\ pop_assum mp_tac
\\ simp [Once evaluate_def]
\\ simp [Once evaluate_def]
\\ simp [Once evaluate_def]
\\ simp [Once evaluate_def]
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ fs [build_rec_env_def]
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ fs [GSYM check_ty_v_def]
\\ rename [‘do_opapp [_; h_tail]’]
\\ last_x_assum (qspecl_then [‘h_tail’,‘dec_clock s’] mp_tac)
\\ impl_tac THEN1 fs [v_size_def]
\\ strip_tac \\ fs []
\\ rw [] \\ fs [dec_clock_def,same_clock_exists,GSYM PULL_EXISTS]
\\ fs [LIST_TYPE_HEAD_def]
\\ qexists_tac ‘()::l’
\\ fs [LIST_TYPE_def,PAIR_TYPE_HEAD_def,PAIR_TYPE_def]
\\ rpt (pop_assum mp_tac)
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
QED
Theorem check_thm_head:
∀v s.
∃env e s' res.
do_opapp [check_thm_v; v] = SOME (env,e) ∧
evaluate (dec_clock ^s) env [e] = (s',res) ∧
(^safe_error_goal ∨
∃k z. s' = s with clock := k ∧ res = Rval [z] ∧
LIST_TYPE_HEAD THM_TYPE_HEAD v)
Proof
strip_tac \\ completeInduct_on ‘v_size v’
\\ rpt strip_tac \\ gvs [PULL_FORALL,AND_IMP_INTRO]
\\ rename [‘do_opapp [_; v]’]
\\ simp [check_thm_v_def]
\\ simp [do_opapp_def]
\\ once_rewrite_tac [find_recfun_def] \\ fs []
\\ simp_tac (srw_ss()) [Once evaluate_def]
\\ simp_tac (srw_ss()) [Once evaluate_def]
\\ reverse IF_CASES_TAC \\ fs []
THEN1 fs [dec_clock_def,same_clock_exists]
\\ simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ simp_tac (srw_ss()) [pmatch_def]
\\ reverse CASE_TAC \\ fs []
\\ TRY (fs [dec_clock_def,same_clock_exists] \\ NO_TAC)
\\ pop_assum mp_tac
\\ Cases_on ‘v’ \\ simp_tac (srw_ss()) [pmatch_def]
\\ Cases_on ‘o'’ \\ simp_tac (srw_ss()) [pmatch_def,AllCaseEqs(),same_ctor_def]
\\ strip_tac \\ fs []
THEN1
(rpt var_eq_tac
\\ simp_tac (srw_ss()) [evaluate_def]
\\ rpt (CASE_TAC \\ gvs [dec_clock_def,same_clock_exists,GSYM PULL_EXISTS])
\\ rpt (pop_assum mp_tac)
\\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ rpt strip_tac \\ gvs []
\\ fs [LIST_TYPE_HEAD_def]
\\ qexists_tac ‘[]’
\\ fs [LIST_TYPE_def])
\\ simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ CASE_TAC \\ fs []
\\ TRY (fs [dec_clock_def,same_clock_exists] \\ NO_TAC)
THEN1
(simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ simp_tac (srw_ss()) [pmatch_def,dec_clock_def,same_clock_exists])
\\ pop_assum mp_tac \\ simp_tac (srw_ss()) [pmatch_def,AllCaseEqs(),same_ctor_def]
\\ strip_tac \\ fs []
\\ gvs [LENGTH_EQ_NUM_compute,pmatch_def]
\\ qmatch_goalsub_abbrev_tac ‘xx = (_,_)’
\\ ‘∃res s. xx = (s,res)’ by metis_tac [PAIR]
\\ fs [Abbr ‘xx’]
\\ drule evaluate_thm_check
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ strip_tac \\ gvs [same_clock_exists]
\\ pop_assum mp_tac
\\ simp [Once evaluate_def]
\\ simp [Once evaluate_def]
\\ simp [Once evaluate_def]
\\ simp [Once evaluate_def]
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ fs [build_rec_env_def]
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ fs [GSYM check_thm_v_def]
\\ rename [‘do_opapp [_; h_tail]’]
\\ last_x_assum (qspecl_then [‘h_tail’,‘dec_clock s’] mp_tac)
\\ impl_tac THEN1 fs [v_size_def]
\\ strip_tac \\ fs []
\\ rw [] \\ fs [dec_clock_def,same_clock_exists,GSYM PULL_EXISTS]
\\ fs [LIST_TYPE_HEAD_def]
\\ qexists_tac ‘()::l’
\\ fs [LIST_TYPE_def,PAIR_TYPE_HEAD_def,PAIR_TYPE_def]
\\ rpt (pop_assum mp_tac)
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
QED
Theorem check_tm_tm_head:
∀v s.
∃env e s' res.
do_opapp [check_tm_tm_v; v] = SOME (env,e) ∧
evaluate (dec_clock ^s) env [e] = (s',res) ∧
(^safe_error_goal ∨
∃k z. s' = s with clock := k ∧ res = Rval [z] ∧
LIST_TYPE_HEAD (PAIR_TYPE_HEAD TERM_TYPE_HEAD TERM_TYPE_HEAD) v)
Proof
strip_tac \\ completeInduct_on ‘v_size v’
\\ rpt strip_tac \\ gvs [PULL_FORALL,AND_IMP_INTRO]
\\ rename [‘do_opapp [_; v]’]
\\ simp [check_tm_tm_v_def]
\\ simp [do_opapp_def]
\\ once_rewrite_tac [find_recfun_def] \\ fs []
\\ simp_tac (srw_ss()) [Once evaluate_def]
\\ simp_tac (srw_ss()) [Once evaluate_def]
\\ rpt strip_tac
\\ reverse IF_CASES_TAC \\ fs []
THEN1 fs [dec_clock_def,same_clock_exists]
\\ simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ simp_tac (srw_ss()) [pmatch_def]
\\ reverse CASE_TAC \\ fs []
\\ TRY (fs [dec_clock_def,same_clock_exists] \\ NO_TAC)
\\ pop_assum mp_tac
\\ Cases_on ‘v’ \\ simp_tac (srw_ss()) [pmatch_def]
\\ Cases_on ‘o'’ \\ simp_tac (srw_ss()) [pmatch_def,AllCaseEqs(),same_ctor_def]
\\ strip_tac \\ fs []
THEN1
(rpt var_eq_tac
\\ simp_tac (srw_ss()) [evaluate_def]
\\ rpt (CASE_TAC \\ gvs [dec_clock_def,same_clock_exists,GSYM PULL_EXISTS])
\\ rpt (pop_assum mp_tac)
\\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ rpt strip_tac \\ gvs []
\\ fs [LIST_TYPE_HEAD_def]
\\ qexists_tac ‘[]’
\\ fs [LIST_TYPE_def])
\\ simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ CASE_TAC \\ fs []
\\ TRY (fs [dec_clock_def,same_clock_exists] \\ NO_TAC)
THEN1
(simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ simp_tac (srw_ss()) [pmatch_def,dec_clock_def,same_clock_exists])
\\ pop_assum mp_tac \\ simp_tac (srw_ss()) [pmatch_def,AllCaseEqs(),same_ctor_def]
\\ strip_tac \\ fs []
\\ gvs [LENGTH_EQ_NUM_compute,pmatch_def]
\\ qmatch_goalsub_abbrev_tac ‘xx = (_,_)’
\\ ‘∃res s. xx = (s,res)’ by metis_tac [PAIR]
\\ fs [Abbr ‘xx’]
\\ pop_assum mp_tac
\\ simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ reverse IF_CASES_TAC \\ fs []
THEN1 (rw [] \\ fs [dec_clock_def,same_clock_exists])
\\ simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ CASE_TAC \\ fs []
\\ TRY (rw [] \\ fs [dec_clock_def,same_clock_exists] \\ NO_TAC)
THEN1 (rw [Once evaluate_def] \\ fs [dec_clock_def,same_clock_exists])
\\ pop_assum mp_tac
\\ Cases_on ‘h’ \\ fs [pmatch_def]
\\ Cases_on ‘o'’ \\ fs [pmatch_def]
\\ simp_tac (srw_ss()) [pmatch_def,AllCaseEqs(),same_ctor_def]
\\ strip_tac \\ fs []
\\ gvs [LENGTH_EQ_NUM_compute,pmatch_def]
\\ strip_tac
\\ drule evaluate_tm_check
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ strip_tac \\ gvs [same_clock_exists]
\\ drule evaluate_tm_check
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ strip_tac \\ gvs [same_clock_exists]
\\ pop_assum mp_tac
\\ simp [Once evaluate_def]
\\ simp [Once evaluate_def]
\\ simp [Once evaluate_def]
\\ simp [Once evaluate_def]
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ fs [build_rec_env_def]
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ fs [GSYM check_tm_tm_v_def]
\\ rename [‘do_opapp [_; h_tail]’]
\\ last_x_assum (qspecl_then [‘h_tail’,‘dec_clock s’] mp_tac)
\\ impl_tac THEN1 fs [v_size_def]
\\ strip_tac \\ fs []
\\ rw [] \\ fs [dec_clock_def,same_clock_exists,GSYM PULL_EXISTS]
\\ fs [LIST_TYPE_HEAD_def]
\\ qexists_tac ‘()::l’
\\ fs [LIST_TYPE_def,PAIR_TYPE_HEAD_def,PAIR_TYPE_def]
\\ rpt (pop_assum mp_tac)
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
QED
Theorem check_ty_ty_head:
∀v s.
∃env e s' res.
do_opapp [check_ty_ty_v; v] = SOME (env,e) ∧
evaluate (dec_clock ^s) env [e] = (s',res) ∧
(^safe_error_goal ∨
∃k z. s' = s with clock := k ∧ res = Rval [z] ∧
LIST_TYPE_HEAD (PAIR_TYPE_HEAD TYPE_TYPE_HEAD TYPE_TYPE_HEAD) v)
Proof
strip_tac \\ completeInduct_on ‘v_size v’
\\ rpt strip_tac \\ gvs [PULL_FORALL,AND_IMP_INTRO]
\\ rename [‘do_opapp [_; v]’]
\\ simp [check_ty_ty_v_def]
\\ simp [do_opapp_def]
\\ once_rewrite_tac [find_recfun_def] \\ fs []
\\ simp_tac (srw_ss()) [Once evaluate_def]
\\ simp_tac (srw_ss()) [Once evaluate_def]
\\ rpt strip_tac
\\ reverse IF_CASES_TAC \\ fs []
THEN1 fs [dec_clock_def,same_clock_exists]
\\ simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ simp_tac (srw_ss()) [pmatch_def]
\\ reverse CASE_TAC \\ fs []
\\ TRY (fs [dec_clock_def,same_clock_exists] \\ NO_TAC)
\\ pop_assum mp_tac
\\ Cases_on ‘v’ \\ simp_tac (srw_ss()) [pmatch_def]
\\ Cases_on ‘o'’ \\ simp_tac (srw_ss()) [pmatch_def,AllCaseEqs(),same_ctor_def]
\\ strip_tac \\ fs []
THEN1
(rpt var_eq_tac
\\ simp_tac (srw_ss()) [evaluate_def]
\\ rpt (CASE_TAC \\ gvs [dec_clock_def,same_clock_exists,GSYM PULL_EXISTS])
\\ rpt (pop_assum mp_tac)
\\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ rpt strip_tac \\ gvs []
\\ fs [LIST_TYPE_HEAD_def]
\\ qexists_tac ‘[]’
\\ fs [LIST_TYPE_def])
\\ simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ CASE_TAC \\ fs []
\\ TRY (fs [dec_clock_def,same_clock_exists] \\ NO_TAC)
THEN1
(simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ simp_tac (srw_ss()) [pmatch_def,dec_clock_def,same_clock_exists])
\\ pop_assum mp_tac \\ simp_tac (srw_ss()) [pmatch_def,AllCaseEqs(),same_ctor_def]
\\ strip_tac \\ fs []
\\ gvs [LENGTH_EQ_NUM_compute,pmatch_def]
\\ qmatch_goalsub_abbrev_tac ‘xx = (_,_)’
\\ ‘∃res s. xx = (s,res)’ by metis_tac [PAIR]
\\ fs [Abbr ‘xx’]
\\ pop_assum mp_tac
\\ simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ reverse IF_CASES_TAC \\ fs []
THEN1 (rw [] \\ fs [dec_clock_def,same_clock_exists])
\\ simp_tac (srw_ss()) [Once evaluate_def,ALL_DISTINCT,astTheory.pat_bindings_def]
\\ CASE_TAC \\ fs []
\\ TRY (rw [] \\ fs [dec_clock_def,same_clock_exists] \\ NO_TAC)
THEN1 (rw [Once evaluate_def] \\ fs [dec_clock_def,same_clock_exists])
\\ pop_assum mp_tac
\\ Cases_on ‘h’ \\ fs [pmatch_def]
\\ Cases_on ‘o'’ \\ fs [pmatch_def]
\\ simp_tac (srw_ss()) [pmatch_def,AllCaseEqs(),same_ctor_def]
\\ strip_tac \\ fs []
\\ gvs [LENGTH_EQ_NUM_compute,pmatch_def]
\\ strip_tac
\\ drule evaluate_ty_check
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ strip_tac \\ gvs [same_clock_exists]
\\ drule evaluate_ty_check
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ strip_tac \\ gvs [same_clock_exists]
\\ pop_assum mp_tac
\\ simp [Once evaluate_def]
\\ simp [Once evaluate_def]
\\ simp [Once evaluate_def]
\\ simp [Once evaluate_def]
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ fs [build_rec_env_def]
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
\\ fs [GSYM check_ty_ty_v_def]
\\ rename [‘do_opapp [_; h_tail]’]
\\ last_x_assum (qspecl_then [‘h_tail’,‘dec_clock s’] mp_tac)
\\ impl_tac THEN1 fs [v_size_def]
\\ strip_tac \\ fs []
\\ rw [] \\ fs [dec_clock_def,same_clock_exists,GSYM PULL_EXISTS]
\\ fs [LIST_TYPE_HEAD_def]
\\ qexists_tac ‘()::l’
\\ fs [LIST_TYPE_def,PAIR_TYPE_HEAD_def,PAIR_TYPE_def]
\\ rpt (pop_assum mp_tac)
\\ fs [] \\ CONV_TAC (DEPTH_CONV ml_progLib.nsLookup_conv) \\ simp []
QED
Theorem evaluate_ty_list_check:
evaluate ^s env
[Let NONE (App Opapp [Var (Short "check_ty"); Var (Short v)]) ee] = (s',res) ∧
nsLookup env.v (Short "check_ty") = SOME check_ty_v ∧
nsLookup env.v (Short v) = SOME w ⇒
^safe_error_goal ∨
LIST_TYPE_HEAD TYPE_TYPE_HEAD w ∧
∃k. evaluate (^s with clock := k) env [ee] = (s',res)
Proof
fs [evaluate_def,same_ctor_def,pmatch_def,do_con_check_def] \\ csimp []
\\ fs [do_app_def,AllCaseEqs()] \\ strip_tac \\ gvs [same_clock_exists]
\\ fs [STRING_TYPE_HEAD_def,STRING_TYPE_def,namespaceTheory.nsOptBind_def]
\\ qspecl_then [‘w’,‘s’] mp_tac check_ty_head
\\ fs [] \\ strip_tac \\ gvs [] \\ metis_tac []
QED
Theorem evaluate_thm_list_check:
evaluate ^s env
[Let NONE (App Opapp [Var (Short "check_thm"); Var (Short v)]) ee] = (s',res) ∧
nsLookup env.v (Short "check_thm") = SOME check_thm_v ∧
nsLookup env.v (Short v) = SOME w ⇒
^safe_error_goal ∨
LIST_TYPE_HEAD THM_TYPE_HEAD w ∧
∃k. evaluate (^s with clock := k) env [ee] = (s',res)
Proof
fs [evaluate_def,same_ctor_def,pmatch_def,do_con_check_def] \\ csimp []
\\ fs [do_app_def,AllCaseEqs()] \\ strip_tac \\ gvs [same_clock_exists]
\\ fs [STRING_TYPE_HEAD_def,STRING_TYPE_def,namespaceTheory.nsOptBind_def]
\\ qspecl_then [‘w’,‘s’] mp_tac check_thm_head
\\ fs [] \\ strip_tac \\ gvs [] \\ metis_tac []
QED
Theorem evaluate_ty_ty_list_check:
evaluate ^s env
[Let NONE (App Opapp [Var (Short "check_ty_ty"); Var (Short v)]) ee] = (s',res) ∧
nsLookup env.v (Short "check_ty_ty") = SOME check_ty_ty_v ∧
nsLookup env.v (Short v) = SOME w ⇒
^safe_error_goal ∨
LIST_TYPE_HEAD (PAIR_TYPE_HEAD TYPE_TYPE_HEAD TYPE_TYPE_HEAD) w ∧
∃k. evaluate (^s with clock := k) env [ee] = (s',res)
Proof
fs [evaluate_def,same_ctor_def,pmatch_def,do_con_check_def] \\ csimp []
\\ fs [do_app_def,AllCaseEqs()] \\ strip_tac \\ gvs [same_clock_exists]
\\ fs [STRING_TYPE_HEAD_def,STRING_TYPE_def,namespaceTheory.nsOptBind_def]
\\ qspecl_then [‘w’,‘s’] mp_tac check_ty_ty_head
\\ fs [] \\ strip_tac \\ gvs [] \\ metis_tac []
QED
Theorem evaluate_tm_list_check:
evaluate ^s env
[Let NONE (App Opapp [Var (Short "check_tm"); Var (Short v)]) ee] = (s',res) ∧
nsLookup env.v (Short "check_tm") = SOME check_tm_v ∧
nsLookup env.v (Short v) = SOME w ⇒
^safe_error_goal ∨
LIST_TYPE_HEAD TERM_TYPE_HEAD w ∧
∃k. evaluate (^s with clock := k) env [ee] = (s',res)
Proof
fs [evaluate_def,same_ctor_def,pmatch_def,do_con_check_def] \\ csimp []
\\ fs [do_app_def,AllCaseEqs()] \\ strip_tac \\ gvs [same_clock_exists]
\\ fs [STRING_TYPE_HEAD_def,STRING_TYPE_def,namespaceTheory.nsOptBind_def]
\\ qspecl_then [‘w’,‘s’] mp_tac check_tm_head
\\ fs [] \\ strip_tac \\ gvs [] \\ metis_tac []
QED
Theorem evaluate_tm_tm_list_check:
evaluate ^s env
[Let NONE (App Opapp [Var (Short "check_tm_tm"); Var (Short v)]) ee] = (s',res) ∧
nsLookup env.v (Short "check_tm_tm") = SOME check_tm_tm_v ∧
nsLookup env.v (Short v) = SOME w ⇒
^safe_error_goal ∨
LIST_TYPE_HEAD (PAIR_TYPE_HEAD TERM_TYPE_HEAD TERM_TYPE_HEAD) w ∧
∃k. evaluate (^s with clock := k) env [ee] = (s',res)
Proof
fs [evaluate_def,same_ctor_def,pmatch_def,do_con_check_def] \\ csimp []
\\ fs [do_app_def,AllCaseEqs()] \\ strip_tac \\ gvs [same_clock_exists]
\\ fs [STRING_TYPE_HEAD_def,STRING_TYPE_def,namespaceTheory.nsOptBind_def]
\\ qspecl_then [‘w’,‘s’] mp_tac check_tm_tm_head
\\ fs [] \\ strip_tac \\ gvs [] \\ metis_tac []
QED
Theorem types_v_head:
do_opapp [types_v; v] = SOME (env, exp) ∧
evaluate ^s env [exp] = (s', res) ⇒
^safe_error_goal ∨
UNIT_TYPE () v
Proof
rewrite_tac[kernel_funs_v_def]
\\ gvs[do_opapp_def]
\\ strip_tac \\ rveq
\\ drule evaluate_unit_check
\\ rewrite_tac []
QED
Theorem constants_v_head:
do_opapp [constants_v; v] = SOME (env, exp) ∧
evaluate ^s env [exp] = (s', res) ⇒
^safe_error_goal ∨
UNIT_TYPE () v
Proof
rewrite_tac[kernel_funs_v_def]