-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathringBufferScript.sml
371 lines (308 loc) · 10.6 KB
/
ringBufferScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
(*
Implementation written by Alexander Cox
*)
open preamble;
open listTheory rich_listTheory arithmeticTheory;
val _ = new_theory"ringBuffer";
(* a ringBuffer is a list with the current size and index of the start *)
(* do I need an end index, i.e. to avoid deletions *)
Datatype: ringBuffer = <| buffer : 'a list ;
size : num ;
start: num |>
End
Overload rbNIL = “λx. x.buffer = []”
Overload iMAX = “λx.LENGTH x.buffer”
(* Definitions for counting successors, predecessors and MOD with regards to the circular nature of the ring buffer *)
Definition iSUC[simp]:
iSUC rb i = (SUC i) MOD iMAX rb
End
Definition iPRE[simp]:
iPRE rb i = PRE (iMAX rb + i) MOD iMAX rb
End
Definition iMOD[simp]:
iMOD rb i = i MOD iMAX rb
End
Definition rbEL_def:
rbEL n rb =
if rbNIL rb ∨ rb.size ≤ n
then NONE
else oEL (iMOD rb (n+rb.start)) rb.buffer
End
Definition rbHD_def[simp]:
rbHD rb = rbEL 0 rb
End
Definition rbTL_def[simp]:
rbTL rb = rb with
<| start := iMOD rb (rb.start + 1) ;
size := (rb.size - 1) |>
End
Theorem ADD1_MOD_LT:
∀x d. 0 < d ∧ (x + 1) MOD d < x MOD d ⇒ (x + 1) MOD d = 0
Proof
rw[] >>
‘∃q r. q * d + r = x ∧ r < d’ by metis_tac[DIVISION] >>
gvs[] >>
‘0 < d’ by simp[] >>
‘∃q r'. r + 1 = q * d + r' ∧ r' < d’ by metis_tac[DIVISION] >>
gs[] >>
‘q=1’ suffices_by (strip_tac >> gs[]) >>
‘∀e. q ≠ 2 + e’ by (rpt strip_tac >> gvs[]) >>
‘q<2’ by (CCONTR_TAC >> gs[NOT_LESS,LESS_EQ_EXISTS]) >>
‘q≠0’ suffices_by simp[] >>
strip_tac >> gvs[]
QED
Definition list_of_ringBuffer_def:
list_of_ringBuffer rb =
TAKE rb.size (DROP rb.start rb.buffer) ++
TAKE ((rb.start + rb.size) - iMAX rb) rb.buffer
End
Theorem list_of_ringBuffer_size0:
∀rb. rb.size = 0 ⇒ rb.start ≤ rb.size ⇒ list_of_ringBuffer rb = []
Proof
rw[list_of_ringBuffer_def]
QED
Definition WFrb_def:
WFrb rb ⇔ rb.size ≤ iMAX rb ∧ rb.start < iMAX rb
End
Theorem list_of_ringBuffer_nil:
WFrb rb ⇒ (list_of_ringBuffer rb = [] ⇔ rb.size = 0)
Proof
rw[list_of_ringBuffer_def,EQ_IMP_THM,WFrb_def] >> gs[]
QED
Theorem TAKE_DROP_CONS_EL:
TAKE n (DROP m l) = h::t ⇒ oEL m l = SOME h
Proof
simp[oEL_EQ_EL] >>
Cases_on ‘l’ >> simp[] >>
Cases_on ‘n’ >> simp[] >>
Cases_on ‘m’ >> simp[] >>
rw[] >- (CCONTR_TAC >>
gs[NOT_LESS] >>
‘DROP n t' = []’ by simp[] >>
‘TAKE (SUC n') (DROP n t') = []’ by simp[] >>
metis_tac[NOT_CONS_NIL]) >>
Cases_on ‘DROP n t'’ >> gs[] >>
Cases_on ‘n < LENGTH t'’ >> gs[NOT_LESS,DROP_EL_CONS,DROP_LENGTH_TOO_LONG]
QED
Theorem list_of_ringBuffer_CONS:
WFrb rb ⇒
(list_of_ringBuffer rb = h::t ⇔
0 < rb.size ∧ (rbHD rb) = SOME h ∧
list_of_ringBuffer (rbTL rb) = t)
Proof
simp[WFrb_def,list_of_ringBuffer_def,rbEL_def,rbHD_def,rbTL_def] >>
Cases_on ‘rb.size’ >> simp[]
>- (strip_tac >>
‘rb.start - iMAX rb = 0 ’ by simp[] >>
simp[]) >>
Cases_on ‘SUC n + rb.start < iMAX rb’
>- (‘SUC n + rb.start - iMAX rb = 0’ by simp[] >> simp[] >>
‘SUC n + (rb.start + 1) - iMAX rb = 0’ by simp[] >> simp[] >>
‘LENGTH (TAKE (SUC n) (DROP rb.start rb.buffer)) ≤ LENGTH rb.buffer’ by simp[] >>
‘0 < LENGTH rb.buffer’ by simp[] >>
simp[NOT_NIL_EQ_LENGTH_NOT_0] >>
‘SUC n + (rb.start + 1) ≤ iMAX rb’ by simp[SUB_EQ_0] >>
rw[EQ_IMP_THM]
>- (Cases_on ‘DROP rb.start rb.buffer’ >- gs[] >>
simp[oEL_EQ_EL] >>
‘rb.start MOD SUC n < SUC n’ by simp[MOD_LESS] >> simp[] >>
Cases_on ‘rb.start < SUC n’ >> gs[NOT_LESS]
>> gs[DROP_CONS_EL])
>- (Cases_on ‘DROP rb.start rb.buffer’ >- gs[] >>
‘DROP (rb.start +1) rb.buffer = t'’ by gs[DROP_EL_CONS] >>
simp[] >>
gvs[])
>- gs[oEL_EQ_EL,DROP_EL_CONS]
)
>- (gs[NOT_LESS,oEL_EQ_EL] >>
strip_tac >>
rw[EQ_IMP_THM]
>- (irule (iffLR $ GSYM NOT_NIL_EQ_LENGTH_NOT_0) >> simp[])
>- (gs[DROP_EL_CONS,ADD1])
>- (
‘∃ prefix suffix. rb.buffer = prefix ++ suffix ∧ rb.start = LENGTH prefix ’ by
(qexistsl_tac [‘TAKE rb.start rb.buffer’,‘DROP rb.start rb.buffer’] >> simp[]) >>
gs[DROP_LENGTH_APPEND] >>
Cases_on ‘suffix’ >> gvs[] >>
rename [‘LENGTH t ≤ n’] >>
gs[ADD_CLAUSES] >>
Cases_on ‘t = []’
>- gs[ADD1] >>
‘0 < LENGTH t’ by gs[GSYM LENGTH_NIL, Excl "LENGTH_NIL"] >>
gs[ADD1] >>
‘LENGTH prefix + 1 = LENGTH (prefix ++ [h])’ suffices_by simp[DROP_LENGTH_APPEND, Excl "LENGTH_APPEND"] >>
simp[])
>- (
‘∃ prefix suffix. rb.buffer = prefix ++ suffix ∧ rb.start = LENGTH prefix ’ by
(qexistsl_tac [‘TAKE rb.start rb.buffer’,‘DROP rb.start rb.buffer’] >> simp[]) >>
gs[DROP_LENGTH_APPEND] >>
Cases_on ‘suffix’ >> gvs[] >>
simp[EL_APPEND1,EL_APPEND2] >>
gs[ADD_CLAUSES] >> gs[ADD1] >>
Cases_on ‘t = []’ >> gs[] >>
‘0 < LENGTH t’ by gs[GSYM LENGTH_NIL, Excl "LENGTH_NIL"] >>
simp[] >>
‘LENGTH prefix + 1 = LENGTH (prefix ++ [h])’ suffices_by simp[DROP_LENGTH_APPEND, Excl "LENGTH_APPEND"] >>
simp[]))
QED
(* Theorem list_of_ringBuffer_eq_cons:
∀rb. WFrb rb ∧ 0 < rb.size ⇒ list_of_ringBuffer rb = THE $ rbEL 0 rb::(list_of_ringBuffer $ rbTL rb)
Proof
rw[WFrb_def] >>
*)
Definition ringBuffer_of_list_def:
ringBuffer_of_list l size start =
<| buffer := l ;
size := size ;
start := start |>
End
Definition empty_rb_def:
empty_rb size default = ringBuffer_of_list (GENLIST (λx. default) size) 0 0
End
Definition rb_of_list_def:
rb_of_list l = ringBuffer_of_list l (LENGTH l) 0
End
Theorem list_of_ringBuffer_inv_thm:
∀l. list_of_ringBuffer $ rb_of_list l = l
Proof
simp[ringBuffer_of_list_def,rb_of_list_def,list_of_ringBuffer_def]
QED
Theorem list_of_ringBuffer_LENGTH:
WFrb rb ⇒ LENGTH $ list_of_ringBuffer rb = rb.size
Proof
simp[list_of_ringBuffer_def] >>
Cases_on ‘rb.size + rb.start < iMAX rb’ >>
simp[] >>
gs[NOT_LESS,WFrb_def] >>
rpt strip_tac >>
simp[LENGTH_TAKE_EQ]
QED
Theorem MOD_lemma:
0 < y ∧ y ≤ x ∧ x < 2 * y ⇒ (x MOD y = x - y)
Proof
strip_tac >> drule_then (qspec_then ‘x’ strip_assume_tac) DIVISION >>
qabbrev_tac ‘q = x DIV y’ >> qabbrev_tac ‘r = x MOD y’ >>
markerLib.RM_ALL_ABBREVS_TAC >> gvs[] >> ‘q = 1’ suffices_by simp[] >>
‘r < 2*y - q * y’ by simp[] >>
fs[GSYM RIGHT_SUB_DISTRIB] >>
‘q < 2’ by (CCONTR_TAC >> ‘2 - q = 0’ by simp[] >> pop_assum SUBST_ALL_TAC >>
gs[]) >>
‘q ≠ 0’ by (strip_tac >> gs[]) >> simp[]
QED
Theorem rbEL_EL:
WFrb rb ⇒
(rbEL i rb = SOME e ⇔
i < rb.size ∧ EL i (list_of_ringBuffer rb) = e)
Proof
simp[rbEL_def, list_of_ringBuffer_def, WFrb_def, oEL_THM] >>
Cases_on ‘i < rb.size’ >> simp[] >>
Cases_on ‘rb.buffer = []’ >> gs[] >> strip_tac >>
Cases_on ‘i + rb.start < iMAX rb’ >> simp[]
>- (‘LENGTH (DROP rb.start rb.buffer) = iMAX rb - rb.start’ by simp[] >>
Cases_on ‘rb.size ≤ iMAX rb - rb.start’
>- simp[EL_APPEND1, EL_TAKE, EL_DROP] >>
simp[TAKE_LENGTH_TOO_LONG] >> simp[EL_APPEND1, EL_DROP]) >>
‘(i + rb.start) MOD iMAX rb = i + rb.start - iMAX rb’
by (irule MOD_lemma >> simp[]) >>
simp[] >>
‘LENGTH (DROP rb.start rb.buffer) = iMAX rb - rb.start’ by simp[] >>
Cases_on ‘rb.size ≤ iMAX rb - rb.start’
>- (simp[EL_APPEND2, EL_TAKE, EL_DROP] >>
‘i + rb.start - iMAX rb = i - rb.size’ by simp[] >> simp[]) >>
simp[EL_APPEND2, EL_TAKE, EL_DROP, TAKE_LENGTH_TOO_LONG]
QED
Definition rbUPDATE_def:
rbUPDATE e n rb =
rb with buffer updated_by
(LUPDATE e ((n+rb.start) MOD rb.size))
End
Definition rbUPDATEL_def:
(rbUPDATEL [] n rb = rb) ∧
(rbUPDATEL (s::ss) n rb = rbUPDATEL ss (SUC n) (rbUPDATE s n rb))
End
EVAL “rb_of_list [1;2;3;4;5;6]”;
EVAL “rbCONS 1 (empty_rb 4 0)”;
EVAL “rbCONS 9 (rb_of_list [1;2;3;4;5;6])”;
EVAL “rbAPPEND (empty_rb 4 0) [10;11]”;
EVAL “rbAPPEND_REVERSE (empty_rb 4 0) [10;11]”;
EVAL “rbPREPEND (empty_rb 4 0) [10;11]”;
EVAL “rbPREPEND_REVERSE (empty_rb 4 0) [10;11]”;
Definition rbCONS_def:
rbCONS e rb =
let index = iPRE rb rb.start
in
if rb.size < LENGTH rb.buffer
then rb with <| buffer := (LUPDATE e index rb.buffer);
size := rb.size + 1;
start := index |>
else rb with <| buffer := (LUPDATE e index rb.buffer);
start := index |>
End
Definition rbSNOC_def:
rbSNOC e rb =
if rb.size < LENGTH rb.buffer
then let index = iMOD rb (rb.start + rb.size)
in rb with
<| buffer := LUPDATE e index rb.buffer;
size := rb.size + 1 |>
else rb with <| buffer := LUPDATE e rb.start rb.buffer;
start := iSUC rb rb.start |>
End
Definition rbAPPEND_def:
(rbAPPEND rb [] = rb) ∧
(rbAPPEND rb (l::ls) = (rbAPPEND (rbSNOC l rb) ls))
End
Theorem rbAPPEND_NIL[simp]:
∀rb. rbAPPEND rb [] = rb
Proof
EVAL_TAC >> simp[]
QED
val ringBuffer_ce = theorem "ringBuffer_component_equality";
(* Theorem rbAPPEND_size: *)
(* ∀rb l. (rbAPPEND rb l).size = rb.size *)
(* Proof *)
(* Induct_on ‘l’ >> *)
(* simp[rbAPPEND_def,rbSNOC_def] >> *)
(* rw[] *)
(* QED *)
(* Theorem rbAPPEND_NIL_BUFFER[simp]: *)
(* ∀rb l. (rb.buffer = [] ∧ LENGTH l ≤ rb.size ∧ rb.start = 0) ⇒ *)
(* rbAPPEND rb l = rb with buffer := l *)
(* Proof *)
(* Induct_on ‘l’ using SNOC_INDUCT *)
(* >- (simp[rbAPPEND_def] >> *)
(* gvs[ringBuffer_ce]) >> *)
(* Cases_on ‘rb’ >> *)
(* gvs[rbAPPEND_def,ringBuffer_ce] >> *)
(* simp[rbAPPEND_size] >> *)
(* rw[] *)
(* >- ( *)
(* EVAL_TAC *)
(* simp[rbAPPEND_def] *)
Definition rbAPPEND_REVERSE_def:
(rbAPPEND_REVERSE rb [] = rb) ∧
(rbAPPEND_REVERSE rb (l::ls) = rbSNOC l (rbAPPEND_REVERSE rb ls))
End
Theorem rbAPPEND_REVERSE_NIL[simp]:
∀rb. rbAPPEND_REVERSE rb [] = rb
Proof EVAL_TAC >> simp[]
QED
Definition rbPREPEND_def:
(rbPREPEND rb [] = rb) ∧
(rbPREPEND rb (l::ls) =
rbCONS l (rbPREPEND rb ls))
End
Theorem rbPREPEND_NIL[simp]:
∀rb. rbPREPEND rb [] = rb
Proof EVAL_TAC >> simp[]
QED
Definition rbPREPEND_REVERSE_def:
(rbPREPEND_REVERSE rb [] = rb) ∧
(rbPREPEND_REVERSE rb (l::ls) =
(rbPREPEND_REVERSE (rbCONS l rb) ls))
End
Theorem rbPREPEND_REVERSE_NIL[simp]:
∀rb. rbPREPEND_REVERSE rb [] = rb
Proof EVAL_TAC >> simp[]
QED
val _ = export_theory();