-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathreader_initScript.sml
289 lines (256 loc) · 6.89 KB
/
reader_initScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
(*
Kernel initialisation
*)
open preamble readerTheory holSyntaxTheory
val _ = new_theory "reader_init";
Overload monad_bind[local] = “st_ex_bind”
Overload monad_unitbind[local] = “λx y. st_ex_bind x (λz. y)”
Overload monad_ignore_bind[local] = “λx y. st_ex_bind x (λz. y)”
Overload return[local] = “st_ex_return”
Overload failwith[local] = “raise_Failure”
val _ = temp_add_monadsyntax()
(* -------------------------------------------------------------------------
* Kernel initialisation
* ------------------------------------------------------------------------- *)
Definition init_refs_def:
init_refs =
<| the_type_constants := init_type_constants
; the_term_constants := init_term_constants
; the_axioms := init_axioms
; the_context := init_context |>
End
(* -------------------------------------------------------------------------
* Axioms, constants and types
* ------------------------------------------------------------------------- *)
(* The OpenTheory articles requires that the three axioms are stated only in
* terms of the constant "=", the types "bool", "ind", "fun", and various
* lambda terms -- e.g. no pre-defined logical constants such as !,?,~,/\,.. *)
Overload A[local] = “Tyvar «A»”
Overload B[local] = “Tyvar «B»”
Overload Ind[local] = “Tyapp «ind» []”
(* -- ETA_AX: |- !t. (\x. t x) = t ----------------------------------------- *)
(* T := (λp. p) = λp. p *)
Definition mk_true_def:
mk_true () =
do
p <- return (mk_var («p», Bool));
f <- mk_abs (p, p);
mk_eq (f, f)
od
End
(* (∀) := λp. (p = λx. T) *)
Definition mk_univ_def:
mk_univ ty =
do
p <- return (mk_var («p», Fun ty Bool));
x <- return (mk_var («x», ty));
tru <- mk_true ();
f <- mk_abs (x, tru);
b <- mk_eq (p, f);
mk_abs (p, b)
od
End
(* ∀x. P[x] := (∀) (λx. P[x]) *)
Definition mk_forall_def:
mk_forall (v, P) =
do
ty <- call_type_of v;
all <- mk_univ ty;
pabs <- mk_abs (v, P);
mk_comb (all, pabs)
od
End
(* ∀(t: 'a -> 'b). (λ(x:'a). t x) = t *)
Definition mk_eta_ax_def:
mk_eta_ax () =
do
t <- return (mk_var («t», Fun A B));
x <- return (mk_var («x», A));
body <- mk_comb (t, x);
tabs <- mk_abs (x, body);
P <- mk_eq (tabs, t);
mk_forall (t, P)
od
End
(* -- SELECT_AX: |- !p. (!x. (p x) ==> (p ((select) p))) ------------------- *)
(* @ *)
Definition select_const_def:
select_const =
Const «@» (Fun (Fun A Bool) A)
End
(* (∧) := λp q. (λf. f p q) = λf. f T T *)
Definition mk_conj_const_def:
mk_conj_const () =
do
p <- return (mk_var («p», Bool));
q <- return (mk_var («q», Bool));
t <- mk_true ();
f <- return (mk_var («f», Fun Bool (Fun Bool Bool)));
ft <- mk_comb (f, t); ftt <- mk_comb (ft, t);
fp <- mk_comb (f, p); fpq <- mk_comb (fp, q);
labs <- mk_abs (f, fpq);
rabs <- mk_abs (f, ftt);
eq <- mk_eq (labs, rabs);
eabs <- mk_abs (q, eq);
mk_abs (p, eabs)
od
End
(* p ∧ q *)
Definition mk_conj_def:
mk_conj (p, q) =
do
c <- mk_conj_const ();
app <- mk_comb (c, p);
mk_comb (app, q)
od
End
(* (⇒) := λp q. p ∧ q = p *)
Definition mk_imp_const_def:
mk_imp_const () =
do
p <- return (mk_var («p», Bool));
q <- return (mk_var («q», Bool));
conj <- mk_conj (p, q);
eq <- mk_eq (conj, p);
eabs <- mk_abs (q, eq);
mk_abs (p, eabs)
od
End
(* p ⇒ q *)
Definition mk_imp_def:
mk_imp (p, q) =
do
imp <- mk_imp_const ();
app <- mk_comb (imp, p);
mk_comb (app, q)
od
End
(* ∀p x. p x ⇒ p ((@) p) *)
Definition mk_select_ax_def:
mk_select_ax () =
do
p <- return (mk_var («p», Fun A Bool));
x <- return (mk_var («x», A));
px <- mk_comb (p, x);
sp <- mk_comb (select_const, p);
psp <- mk_comb (p, sp);
imp <- mk_imp (px, psp);
all <- mk_forall (x, imp);
mk_forall (p, all)
od
End
(* -- INFINITY_AX: |- ∃f. injective f ∧ ¬surjective f ---------------------- *)
(* (∃) := λp. ∀q. (∀x. p x ⇒ q) ⇒ q *)
Definition mk_ex_def:
mk_ex ty =
do
p <- return (mk_var («p», Fun ty Bool));
q <- return (mk_var («q», Bool));
x <- return (mk_var («x», ty));
px <- mk_comb (p, x);
imp <- mk_imp (px, q);
l <- mk_forall (x, imp);
imp2 <- mk_imp (l, q);
all <- mk_forall (q, imp2);
mk_abs (p, all)
od
End
(* ∃x. P[x] := (∃) (λx. P[x]) *)
Definition mk_exists_def:
mk_exists (v, P) =
do
ty <- call_type_of v;
ex <- mk_ex ty;
pabs <- mk_abs (v, P);
mk_comb (ex, pabs)
od
End
(* surjective f := ∀y. ∃x. y = f x *)
(* surjective := λf. ∀y. ∃x. y = f x *)
Definition mk_surj_def:
mk_surj f dom codom =
do
ty <- call_type_of f;
y <- return (mk_var («y», codom));
x <- return (mk_var («x», dom));
fx <- mk_comb (f, x);
eq <- mk_eq (y, fx);
ex <- mk_exists (x, eq);
mk_forall (y, ex);
od
End
(* injective f := ∀x y. f x = f y ⇒ x = y *)
(* injective := λf. ∀x y. f x = f y ⇒ x = y *)
Definition mk_inj_def:
mk_inj f dom =
do
ty <- call_type_of f;
x <- return (mk_var («x», dom));
y <- return (mk_var («y», dom));
fx <- mk_comb (f, x);
fy <- mk_comb (f, y);
lhs <- mk_eq (fx, fy);
rhs <- mk_eq (x, y);
imp <- mk_imp (lhs, rhs);
yall <- mk_forall (y, imp);
mk_forall (x, yall);
od
End
(* F := ∀p. p *)
Definition mk_false_def:
mk_false () =
do
p <- return (mk_var («p», Bool));
mk_forall (p, p)
od
End
(* (¬) := λp. p ⇒ F *)
Definition mk_neg_const_def:
mk_neg_const () =
do
p <- return (mk_var («p», Bool));
f <- mk_false ();
imp <- mk_imp (p, f);
mk_abs (p, imp)
od
End
(* ¬p := (¬) p *)
Definition mk_neg_def:
mk_neg p =
do
neg <- mk_neg_const ();
mk_comb (neg, p)
od
End
Definition mk_infinity_ax_def:
mk_infinity_ax () =
do
f <- return (mk_var («f», Fun Ind Ind));
surj <- mk_surj f Ind Ind;
inj <- mk_inj f Ind;
nsurj <- mk_neg surj;
conj <- mk_conj (inj, nsurj);
mk_exists (f, conj)
od
End
(* -------------------------------------------------------------------------
* Start reader with axioms
* ------------------------------------------------------------------------- *)
Definition ind_type_def:
ind_type = («ind», 0i)
End
Definition select_sym_def:
select_sym = («@», Fun (Fun A Bool) A)
End
Definition init_reader_def:
init_reader () =
do
ax <- mk_eta_ax (); new_axiom ax;
new_constant select_sym;
ax <- mk_select_ax (); new_axiom ax;
call_new_type ind_type;
ax <- mk_infinity_ax (); new_axiom ax;
return ()
od
End
val _ = export_theory ();