-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathnpbc_arrayProgScript.sml
5267 lines (4945 loc) · 146 KB
/
npbc_arrayProgScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
Refine npbc_list to npbc_array
*)
open preamble basis UnsafeProgTheory UnsafeProofTheory npbcTheory npbc_listTheory;
val _ = new_theory "npbc_arrayProg"
val _ = translation_extends"UnsafeProg";
val xlet_autop = xlet_auto >- (TRY( xcon) >> xsimpl)
val _ = process_topdecs `
exception Fail string;
` |> append_prog
fun get_exn_conv name =
EVAL ``lookup_cons (Short ^name) ^(get_env (get_ml_prog_state ()))``
|> concl |> rand |> rand |> rand
val fail = get_exn_conv ``"Fail"``
Definition Fail_exn_def:
Fail_exn v = (∃s sv. v = Conv (SOME ^fail) [sv] ∧ STRING_TYPE s sv)
End
val _ = register_type ``:constr``
val _ = register_type ``:lstep ``
val _ = register_type ``:sstep ``
Definition format_failure_def:
format_failure (lno:num) s =
strlit "c Checking failed for top-level proof step starting at line: " ^ toString lno ^ strlit " (error may be in subproofs). Reason: " ^ s ^ strlit"\n"
End
val r = translate format_failure_def;
val r = translate OPTION_MAP2_DEF;
(* Translate steps in check_cutting *)
val r = translate listTheory.REV_DEF;
val r = translate offset_def;
val res = translate mk_BN_def;
val res = translate mk_BS_def;
val res = translate delete_def;
val res = translate insert_def;
val res = translate lookup_def;
val res = translate map_def;
val res = translate spt_center_def;
val res = translate spt_right_def;
val res = translate spt_left_def;
val res = translate spts_to_alist_add_pause_def;
val res = translate spts_to_alist_aux_def;
val res = translate spts_to_alist_def;
val res = translate toSortedAList_def;
val res = translate lrnext_def;
val res = translate foldi_def;
val res = translate toAList_def;
val r = translate add_terms_def;
val r = translate add_listsLR_def;
val r = translate add_listsLR_thm;
val r = translate (add_def |> REWRITE_RULE [GSYM ml_translatorTheory.sub_check_def]);
val r = translate multiply_def;
val r = translate IQ_def;
val r = translate div_ceiling_def;
val r = translate arithmeticTheory.CEILING_DIV_def ;
val r = translate divide_def;
val divide_side = Q.prove(
`∀x y. divide_side x y ⇔ y ≠ 0`,
Cases>>
EVAL_TAC>>
rw[EQ_IMP_THM]>>
intLib.ARITH_TAC
) |> update_precondition
val r = translate abs_min_def;
val r = translate saturate_def;
val r = translate (weaken_aux_def |> REWRITE_RULE [GSYM ml_translatorTheory.sub_check_def]);
val r = translate weaken_def;
Definition lookup_err_string_def:
lookup_err_string b =
if b then
strlit"invalid core constraint id: "
else strlit"invalid constraint id: "
End
val r = translate lookup_err_string_def;
(* Overload notation for long _TYPE relations *)
Overload "constraint_TYPE" = ``PAIR_TYPE (LIST_TYPE (PAIR_TYPE INT NUM)) NUM``
Overload "bconstraint_TYPE" = ``PAIR_TYPE constraint_TYPE BOOL``
val NPBC_CHECK_CONSTR_TYPE_def = fetch "-" "NPBC_CHECK_CONSTR_TYPE_def";
val PBC_LIT_TYPE_def = fetch "-" "PBC_LIT_TYPE_def"
(* option version *)
val lookup_core_only_arr = process_topdecs`
fun lookup_core_only_arr b fml n =
case Array.lookup fml None n of
None => None
| Some (c,b') =>
if b then
(if b' then Some c
else None)
else Some c` |> append_prog;
Theorem lookup_core_only_arr_spec:
NUM n nv ∧
BOOL b bv ∧
LIST_REL (OPTION_TYPE bconstraint_TYPE) fmlls fmllsv
⇒
app (p : 'ffi ffi_proj)
^(fetch_v "lookup_core_only_arr" (get_ml_prog_state()))
[bv; fmlv; nv]
(ARRAY fmlv fmllsv)
(POSTv v.
ARRAY fmlv fmllsv *
&(
OPTION_TYPE constraint_TYPE
(lookup_core_only_list b fmlls n) v))
Proof
rw[lookup_core_only_list_def]>>
xcf"lookup_core_only_arr"(get_ml_prog_state ())>>
xlet_autop>>
xlet_auto>>
`OPTION_TYPE bconstraint_TYPE (any_el n fmlls NONE) v'` by (
rw[any_el_ALT]>>
fs[LIST_REL_EL_EQN,OPTION_TYPE_def])>>
Cases_on`any_el n fmlls NONE`>>fs[OPTION_TYPE_def]
>- (
xmatch>>
xcon>>xsimpl)>>
Cases_on`x`>>fs[PAIR_TYPE_def]>>
qpat_x_assum`Conv _ _ = any_el _ _ _` (assume_tac o SYM)>>
xmatch>>
reverse xif
>- (
xcon>>xsimpl>>
simp[OPTION_TYPE_def]) >>
reverse xif
>- (
xcon>>xsimpl>>
simp[OPTION_TYPE_def]) >>
xcon>>xsimpl>>
simp[OPTION_TYPE_def]
QED
val lookup_core_only_err_arr = process_topdecs`
fun lookup_core_only_err_arr lno b fml n =
case Array.lookup fml None n of
None =>
raise Fail (format_failure lno (lookup_err_string b ^ Int.toString n))
| Some (c,b') =>
if b then
(if b' then c
else
raise Fail (format_failure lno (lookup_err_string b ^ Int.toString n)))
else c` |> append_prog;
Theorem lookup_core_only_err_arr_spec:
NUM lno lnov ∧
NUM n nv ∧
BOOL b bv ∧
LIST_REL (OPTION_TYPE bconstraint_TYPE) fmlls fmllsv
⇒
app (p : 'ffi ffi_proj)
^(fetch_v "lookup_core_only_err_arr" (get_ml_prog_state()))
[lnov; bv; fmlv; nv]
(ARRAY fmlv fmllsv)
(POSTve
(λv.
ARRAY fmlv fmllsv *
&(case lookup_core_only_list b fmlls n of NONE => F
| SOME x => constraint_TYPE x v))
(λe.
ARRAY fmlv fmllsv *
& (Fail_exn e ∧
lookup_core_only_list b fmlls n = NONE)))
Proof
rw[lookup_core_only_list_def]>>
xcf"lookup_core_only_err_arr"(get_ml_prog_state ())>>
xlet_autop>>
xlet_auto>>
`OPTION_TYPE bconstraint_TYPE (any_el n fmlls NONE) v'` by (
rw[any_el_ALT]>>
fs[LIST_REL_EL_EQN,OPTION_TYPE_def])>>
Cases_on`any_el n fmlls NONE`>>fs[OPTION_TYPE_def]
>- (
xmatch>>
rpt xlet_autop>>
xraise>>xsimpl>>
simp[Fail_exn_def]>>
metis_tac[])>>
Cases_on`x`>>fs[PAIR_TYPE_def]>>
qpat_x_assum`Conv _ _ = any_el _ _ _` (assume_tac o SYM)>>
xmatch>>
reverse xif
>- (
xvar>>xsimpl)>>
reverse xif
>- (
rpt xlet_autop>>
xraise>>xsimpl>>
simp[Fail_exn_def]>>
metis_tac[])>>
xvar>>xsimpl
QED
(* Throws an error *)
val check_cutting_arr = process_topdecs`
fun check_cutting_arr lno b fml constr =
case constr of
Id n =>
lookup_core_only_err_arr lno b fml n
| Add c1 c2 =>
add (check_cutting_arr lno b fml c1)
(check_cutting_arr lno b fml c2)
| Mul c k =>
multiply (check_cutting_arr lno b fml c) k
| Div_1 c k =>
if k <> 0 then
divide (check_cutting_arr lno b fml c) k
else raise Fail (format_failure lno ("divide by zero"))
| Sat c =>
saturate (check_cutting_arr lno b fml c)
| Lit l =>
(case l of
Pos v => ([(1,v)], 0)
| Neg v => ([(~1,v)], 0))
| Weak c var =>
weaken (check_cutting_arr lno b fml c) var` |> append_prog
Theorem check_cutting_arr_spec:
∀constr constrv lno lnov b bv fmlls fmllsv fmlv.
NPBC_CHECK_CONSTR_TYPE constr constrv ∧
NUM lno lnov ∧
BOOL b bv ∧
LIST_REL (OPTION_TYPE bconstraint_TYPE) fmlls fmllsv
⇒
app (p : 'ffi ffi_proj)
^(fetch_v "check_cutting_arr" (get_ml_prog_state()))
[lnov; bv; fmlv; constrv]
(ARRAY fmlv fmllsv)
(POSTve
(λv.
ARRAY fmlv fmllsv *
&(case check_cutting_list b fmlls constr of NONE => F
| SOME x => constraint_TYPE x v))
(λe.
ARRAY fmlv fmllsv *
& (Fail_exn e ∧
check_cutting_list b fmlls constr = NONE)))
Proof
Induct_on`constr` >> rw[]>>
xcf "check_cutting_arr" (get_ml_prog_state ())
>- ( (* Id *)
fs[check_cutting_list_def,NPBC_CHECK_CONSTR_TYPE_def]>>
xmatch>>
xapp>>xsimpl>>
metis_tac[])
>- ( (* Add *)
fs[check_cutting_list_def,NPBC_CHECK_CONSTR_TYPE_def]>>
xmatch>>
xlet_autop >- xsimpl>>
xlet_autop >- xsimpl>>
last_x_assum kall_tac>>
last_x_assum kall_tac>>
every_case_tac>>fs[]>>
xapp>>xsimpl>>
metis_tac[])
>- ( (* Mul *)
fs[check_cutting_list_def,NPBC_CHECK_CONSTR_TYPE_def]>>
xmatch>>
xlet_autop >- xsimpl>>
last_x_assum kall_tac>>
every_case_tac>>fs[]>>
xapp>>xsimpl>>
metis_tac[])
>- ( (* Div *)
fs[check_cutting_list_def,NPBC_CHECK_CONSTR_TYPE_def]>>
xmatch>>
xlet_autop>>
reverse IF_CASES_TAC>>xif>>asm_exists_tac>>fs[]
>- (
rpt xlet_autop>>
xraise>>xsimpl>>
simp[Fail_exn_def]>>metis_tac[])>>
xlet_autop>- xsimpl>>
xapp>>xsimpl>>
asm_exists_tac>>simp[]>>
pop_assum mp_tac>>
TOP_CASE_TAC>>rw[]>>
metis_tac[])
>- ( (* Sat *)
fs[check_cutting_list_def,NPBC_CHECK_CONSTR_TYPE_def]>>
xmatch>>
xlet_autop>- xsimpl>>
xapp_spec
(fetch "-" "saturate_v_thm" |> INST_TYPE [alpha|->``:num``])>>
xsimpl>>
pop_assum mp_tac>>
TOP_CASE_TAC>>rw[]>>
metis_tac[])
>- ( (* Lit *)
fs[check_cutting_list_def,NPBC_CHECK_CONSTR_TYPE_def]>>
xmatch>>
Cases_on`l`>>
fs[PBC_LIT_TYPE_def]>>xmatch>>
rpt xlet_autop>>
xcon>>xsimpl>>
simp[LIST_TYPE_def,PAIR_TYPE_def])
>> ( (* Weak *)
fs[check_cutting_list_def,NPBC_CHECK_CONSTR_TYPE_def]>>
xmatch>>
xlet_autop>- xsimpl>>
xapp_spec
(fetch "-" "weaken_v_thm" |> INST_TYPE [alpha|->``:num``])>>
xsimpl>>
pop_assum mp_tac>>
TOP_CASE_TAC>>rw[]>>
first_x_assum (irule_at Any)>>
metis_tac[EqualityType_NUM_BOOL])
QED
(*
val res = translate npbcTheory.add_terms_spt_def;
val res = translate npbcTheory.lookup_default_def;
val res = translate npbcTheory.add_lists_spt_def;
val res = translate npbcTheory.add_spt_def;
val res = translate npbc_checkTheory.spt_of_list_def;
val res = translate npbcTheory.multiply_spt_def;
val res = translate npbcTheory.divide_spt_def;
val divide_spt_side = Q.prove(
`∀x y. divide_spt_side x y ⇔ y ≠ 0`,
Cases>>
EVAL_TAC>>
rw[EQ_IMP_THM]>>
intLib.ARITH_TAC
) |> update_precondition
val res = translate npbcTheory.saturate_spt_def;
val res = translate npbcTheory.weaken_spt_def;
val res = translate npbc_checkTheory.spt_of_lit_def
val check_cutting_spt_arr = process_topdecs`
fun check_cutting_spt_arr lno fml constr =
case constr of
Id n =>
(case Array.lookup fml None n of
None =>
raise Fail (format_failure lno ("invalid constraint id: " ^ Int.toString n))
| Some c => spt_of_list c)
| Add c1 c2 =>
add_spt
(check_cutting_spt_arr lno fml c1)
(check_cutting_arr lno fml c2)
| Mul c k =>
multiply_spt (check_cutting_spt_arr lno fml c) k
| Div_1 c k =>
if k <> 0 then
divide_spt (check_cutting_spt_arr lno fml c) k
else raise Fail (format_failure lno ("divide by zero"))
| Sat c =>
saturate_spt (check_cutting_spt_arr lno fml c)
| Weak c var =>
weaken_spt (check_cutting_spt_arr lno fml c) var
| Lit l => spt_of_lit l
` |> append_prog
val res = translate npbc_checkTheory.constraint_of_spt_def;
val check_cutting_alt_arr = process_topdecs`
fun check_cutting_alt_arr lno fml constr =
constraint_of_spt (check_cutting_spt_arr lno fml constr)` |> append_prog;
*)
(* Translation for pb checking *)
val r = translate (lslack_def |> SIMP_RULE std_ss [MEMBER_INTRO, o_DEF]);
val r = translate (check_contradiction_def |> SIMP_RULE std_ss[LET_DEF]);
val delete_arr = process_topdecs`
fun delete_arr i fml =
if Array.length fml <= i then ()
else
(Unsafe.update fml i None)` |> append_prog
Theorem delete_arr_spec:
NUM i iv ∧
LIST_REL (OPTION_TYPE a) fmlls fmllsv
⇒
app (p : 'ffi ffi_proj)
^(fetch_v "delete_arr" (get_ml_prog_state()))
[iv; fmlv]
(ARRAY fmlv fmllsv)
(POSTv resv.
&UNIT_TYPE () resv *
SEP_EXISTS fmllsv'.
ARRAY fmlv fmllsv' *
&(LIST_REL (OPTION_TYPE a) (delete_list i fmlls) fmllsv') )
Proof
rw[]>>
xcf "delete_arr" (get_ml_prog_state ())>>
simp[delete_list_def]>>
xlet_autop>>
xlet_autop>>
`LENGTH fmlls = LENGTH fmllsv` by
metis_tac[LIST_REL_LENGTH]>>
xif>-
(xcon>>xsimpl)>>
xlet_auto >- (xcon>>xsimpl)>>
xapp>>xsimpl>>
first_x_assum (irule_at Any)>>
rw[]>>
match_mp_tac EVERY2_LUPDATE_same>> simp[OPTION_TYPE_def]
QED
val list_delete_arr = process_topdecs`
fun list_delete_arr ls fml =
case ls of
[] => ()
| (i::is) =>
(delete_arr i fml; list_delete_arr is fml)` |> append_prog
Theorem list_delete_arr_spec:
∀ls lsv fmlls fmllsv.
(LIST_TYPE NUM) ls lsv ∧
LIST_REL (OPTION_TYPE a) fmlls fmllsv
⇒
app (p : 'ffi ffi_proj)
^(fetch_v "list_delete_arr" (get_ml_prog_state()))
[lsv; fmlv]
(ARRAY fmlv fmllsv)
(POSTv resv.
&UNIT_TYPE () resv *
SEP_EXISTS fmllsv'.
ARRAY fmlv fmllsv' *
&(LIST_REL (OPTION_TYPE a) (list_delete_list ls fmlls) fmllsv') )
Proof
Induct>>
rw[]>>simp[list_delete_list_def]>>
xcf "list_delete_arr" (get_ml_prog_state ())>>
fs[LIST_TYPE_def]
>- (
xmatch>>
xcon>>xsimpl) >>
xmatch>>
xlet_autop>>
xapp>>
metis_tac[]
QED
Definition mk_ids_def:
mk_ids id_start (id_end:num) =
if id_start < id_end then id_start::mk_ids (id_start+1) id_end else []
Termination
WF_REL_TAC `measure (λ(a,b). b-a)`
End
val _ = translate mk_ids_def;
val rollback_arr = process_topdecs`
fun rollback_arr fml id_start id_end =
list_delete_arr (mk_ids id_start id_end) fml` |> append_prog
Theorem mk_ids_MAP_COUNT_LIST:
∀start end.
mk_ids start end =
MAP ($+ start) (COUNT_LIST (end − start))
Proof
ho_match_mp_tac mk_ids_ind>>rw[]>>
simp[Once mk_ids_def]>>rw[]>>gs[]>>
Cases_on`end-start`>>fs[COUNT_LIST_def]>>
`end-(start+1) = n` by fs[]>>
simp[MAP_MAP_o,MAP_EQ_f]
QED
Theorem rollback_arr_spec:
NUM start startv ∧
NUM end endv ∧
LIST_REL (OPTION_TYPE a) fmlls fmllsv
⇒
app (p : 'ffi ffi_proj)
^(fetch_v "rollback_arr" (get_ml_prog_state()))
[fmlv;startv; endv]
(ARRAY fmlv fmllsv)
(POSTv resv.
&UNIT_TYPE () resv *
SEP_EXISTS fmllsv'.
ARRAY fmlv fmllsv' *
&(LIST_REL (OPTION_TYPE a) (rollback fmlls start end) fmllsv') )
Proof
rw[]>>
xcf"rollback_arr"(get_ml_prog_state ())>>
xlet_autop>>
xapp>>
asm_exists_tac>>xsimpl>>
asm_exists_tac>>xsimpl>>
rw[]>>fs[rollback_def]>>
metis_tac[mk_ids_MAP_COUNT_LIST]
QED
val res = translate (not_def |> REWRITE_RULE [GSYM ml_translatorTheory.sub_check_def])
val res = translate sorted_insert_def;
(* Possibly raise error here directly *)
val check_contradiction_fml_arr = process_topdecs`
fun check_contradiction_fml_arr b fml n =
case lookup_core_only_arr b fml n of
None => False
| Some c =>
check_contradiction c` |> append_prog
Theorem check_contradiction_fml_arr_spec:
NUM n nv ∧
BOOL b bv ∧
LIST_REL (OPTION_TYPE bconstraint_TYPE) fmlls fmllsv
⇒
app (p : 'ffi ffi_proj)
^(fetch_v "check_contradiction_fml_arr" (get_ml_prog_state()))
[bv; fmlv; nv]
(ARRAY fmlv fmllsv)
(POSTv v.
ARRAY fmlv fmllsv *
&(
BOOL (check_contradiction_fml_list b fmlls n) v))
Proof
rw[check_contradiction_fml_list_def]>>
xcf"check_contradiction_fml_arr"(get_ml_prog_state ())>>
xlet_autop>>
Cases_on`lookup_core_only_list b fmlls n`>>
fs[OPTION_TYPE_def]>>
xmatch
>- (
xcon>>
xsimpl)>>
xapp>>xsimpl>>
asm_exists_tac>>rw[]
QED
(* TODO: copied *)
Theorem LIST_REL_update_resize:
LIST_REL R a b ∧ R a1 b1 ∧ R a2 b2 ⇒
LIST_REL R (update_resize a a1 a2 n) (update_resize b b1 b2 n)
Proof
rw[update_resize_def]
>- (
match_mp_tac EVERY2_LUPDATE_same>>
fs[])
>- fs[LIST_REL_EL_EQN]
>- fs[LIST_REL_EL_EQN]>>
match_mp_tac EVERY2_LUPDATE_same>>
simp[]>>
match_mp_tac EVERY2_APPEND_suff>>
fs[LIST_REL_EL_EQN]>>rw[]>>
fs[EL_REPLICATE]
QED
Definition coeff_lit_string_def:
coeff_lit_string (c,v:var) =
if c < 0
then toString (Num ~c) ^ strlit" ~x"^ toString v
else toString (Num c) ^ strlit" x"^ toString v
End
Definition npbc_lhs_string_def:
npbc_lhs_string (xs: ((int # var) list)) =
concatWith (strlit" ")
(MAP coeff_lit_string xs)
End
Definition npbc_string_def:
(npbc_string (xs,i:num) =
concat [
npbc_lhs_string xs;
strlit" >= ";
toString i; strlit ";"])
End
Definition err_check_string_def:
err_check_string c c' =
concat[
strlit"constraint id check failed. expect: ";
npbc_string c;
strlit" got: ";
npbc_string c']
End
val res = translate coeff_lit_string_def;
val coeff_lit_string_side = Q.prove(
`∀n. coeff_lit_string_side n ⇔ T`,
EVAL_TAC>>rw[]>>
intLib.ARITH_TAC
) |> update_precondition;
val res = translate npbc_lhs_string_def;
val res = translate npbc_string_def;
val res = translate err_check_string_def;
val every_less = process_topdecs`
fun every_less mindel fml ls =
(case ls of [] => True
| (i::is) =>
case lookup_core_only_arr True fml i of
None =>
mindel <= i andalso
every_less mindel fml is
| Some c => False
)` |> append_prog;
Theorem every_less_spec:
∀fmlls ls mindel lsv fmlv fmllsv mindelv.
NUM mindel mindelv ∧
LIST_REL (OPTION_TYPE bconstraint_TYPE) fmlls fmllsv ∧
(LIST_TYPE NUM) ls lsv
⇒
app (p : 'ffi ffi_proj)
^(fetch_v "every_less" (get_ml_prog_state()))
[mindelv; fmlv; lsv]
(ARRAY fmlv fmllsv)
(POSTv v.
ARRAY fmlv fmllsv *
&(BOOL
(EVERY (λid. mindel ≤ id ∧
lookup_core_only_list T fmlls id = NONE) ls) v))
Proof
Induct_on`ls`>>
rw[]>>
xcf"every_less"(get_ml_prog_state ())>>
fs[LIST_TYPE_def]>>
xmatch
>-
(xcon>>xsimpl)>>
rpt xlet_autop>>
xlet`POSTv v.
ARRAY fmlv fmllsv *
&(
OPTION_TYPE constraint_TYPE
(lookup_core_only_list T fmlls h) v)`
>-
(xapp>>xsimpl)>>
Cases_on`lookup_core_only_list T fmlls h`>>
fs[OPTION_TYPE_def]>>
xmatch
>- (
xlet_autop>>xlog>>
rw[]
>-
(xapp>>xsimpl)>>
xsimpl>>
gvs[])>>
xcon>>
xsimpl
QED
val opt_update_arr = process_topdecs`
fun opt_update_arr fml c id =
case c of
None => (fml,id)
| Some cc =>
(Array.updateResize fml None id (Some cc), id+1)`
|> append_prog;
Theorem ARRAY_refl:
(ARRAY fml fmllsv ==>> ARRAY fml fmllsv) ∧
(ARRAY fml fmllsv ==>> ARRAY fml fmllsv * GC)
Proof
xsimpl
QED
Theorem W8ARRAY_refl:
(W8ARRAY fml fmllsv ==>> W8ARRAY fml fmllsv) ∧
(W8ARRAY fml fmllsv ==>> W8ARRAY fml fmllsv * GC)
Proof
xsimpl
QED
Theorem ARRAY_W8ARRAY_refl:
(ARRAY fml fmllsv * W8ARRAY zerosv zeros ==>> ARRAY fml fmllsv * W8ARRAY zerosv zeros ) ∧
(W8ARRAY zerosv zeros * ARRAY fml fmllsv ==>> ARRAY fml fmllsv * W8ARRAY zerosv zeros) ∧
(ARRAY fml fmllsv * W8ARRAY zerosv zeros ==>> ARRAY fml fmllsv * W8ARRAY zerosv zeros * GC) ∧
(ARRAY fml fmllsv * W8ARRAY zerosv zeros ==>> W8ARRAY zerosv zeros * ARRAY fml fmllsv * GC) ∧
(W8ARRAY zerosv zeros * ARRAY fml fmllsv ==>> ARRAY fml fmllsv * W8ARRAY zerosv zeros * GC)
Proof
xsimpl
QED
Theorem opt_update_arr_spec:
LIST_REL (OPTION_TYPE bconstraint_TYPE) fmlls fmllsv ∧
(OPTION_TYPE bconstraint_TYPE) c cv ∧
NUM id idv
⇒
app (p : 'ffi ffi_proj)
^(fetch_v "opt_update_arr" (get_ml_prog_state()))
[fmlv; cv; idv]
(ARRAY fmlv fmllsv)
(POSTv v.
SEP_EXISTS fmlv' fmllsv'.
ARRAY fmlv' fmllsv' *
&(
PAIR_TYPE
(λl v.
LIST_REL (OPTION_TYPE bconstraint_TYPE) l fmllsv' ∧
v = fmlv')
NUM
(opt_update fmlls c id) v))
Proof
Cases_on`c`>>rw[]>>
xcf"opt_update_arr"(get_ml_prog_state ())>>
fs[OPTION_TYPE_def]>>xmatch
>- (
xcon>>xsimpl>>
simp[PAIR_TYPE_def]>>
metis_tac[ARRAY_refl])>>
rpt xlet_autop>>
xlet_auto>>
xcon>>xsimpl>>
simp[PAIR_TYPE_def]>>
qmatch_goalsub_abbrev_tac`ARRAY _ lss`>>
qexists_tac`lss`>>xsimpl>>
simp[Abbr`lss`]>>
match_mp_tac LIST_REL_update_resize>>simp[OPTION_TYPE_def]
QED
Definition eq_zw_def:
eq_zw v ⇔
v = (0w:word8)
End
val res = translate eq_zw_def;
Definition abs_def:
abs i = Num (ABS i)
End
val res = translate abs_def;
Definition add_to_acc_def:
add_to_acc i v k acc =
if v = (1w:word8) <=> i < (0:int) then acc
else acc + (k:num)
End
val res = translate add_to_acc_def;
val rup_pass1_arr = process_topdecs`
fun rup_pass1_arr assg ls acc ys m =
case ls of [] => (acc,ys,m)
| (i,n)::xs =>
let
val k = abs i in
if n < Word8Array.length assg
then
let val v = Unsafe.w8sub assg n in
if eq_zw v then
rup_pass1_arr assg xs (acc + k) ((k,(i,n))::ys) (max m n)
else
rup_pass1_arr assg xs (add_to_acc i v k acc) ys m
end
else
rup_pass1_arr assg xs (acc + k) ((k,(i,n))::ys) (max m n)
end` |> append_prog;
Theorem rup_pass1_arr_spec:
∀ls lsv acc ys m accv ysv mv.
LIST_TYPE (PAIR_TYPE INT NUM) ls lsv ∧
NUM acc accv ∧
LIST_TYPE (PAIR_TYPE NUM (PAIR_TYPE INT NUM)) ys ysv ∧
NUM m mv ∧
rup_pass1_list assg ls acc ys m = (acc',ys',m') ⇒
app (p : 'ffi ffi_proj)
^(fetch_v "rup_pass1_arr" (get_ml_prog_state()))
[assgv; lsv; accv; ysv; mv]
(W8ARRAY assgv assg)
(POSTv v.
W8ARRAY assgv assg *
SEP_EXISTS v1 v2 v3.
&(
v = Conv NONE [v1; v2; v3] ∧
NUM acc' v1 ∧
LIST_TYPE (PAIR_TYPE NUM (PAIR_TYPE INT NUM)) ys' v2 ∧
NUM m' v3)
)
Proof
Induct>>rw[]>>
xcf"rup_pass1_arr"(get_ml_prog_state ())>>
gvs[LIST_TYPE_def,rup_pass1_list_def]
>- (
xmatch>>
xcon>>xsimpl)>>
PairCases_on`h`>>
gvs[PAIR_TYPE_def,rup_pass1_list_def]>>
xmatch>>
rpt xlet_autop>>
gvs[abs_def]>>
reverse xif
>- (
rpt xlet_autop>>
xapp>>gvs[]>>
first_x_assum (irule_at (Pos (el 1)))>>
simp[LIST_TYPE_def,PAIR_TYPE_def])>>
gvs[]>>
rpt xlet_autop>>
gvs[eq_zw_def]>>xif
>- (
rpt xlet_autop>>
xapp>>gvs[]>>
first_x_assum (irule_at (Pos (el 1)))>>
simp[LIST_TYPE_def,PAIR_TYPE_def])>>
xlet_autop>>
xapp>>gvs[]>>
every_case_tac>>gvs[add_to_acc_def]>>
first_x_assum (irule_at (Pos (el 1)))>>
gvs[]
QED
Definition mk_flag_def:
mk_flag (i: int) =
(if 0 ≤ i then 1w else (2w:word8))
End
val res = translate mk_flag_def;
val rup_pass2_arr = process_topdecs`
fun rup_pass2_arr assg max ls l changes =
case ls of [] => changes
| (k,(i,n))::ys =>
if max < l + k then
(Unsafe.w8update assg n (mk_flag i);
rup_pass2_arr assg max ys l (n::changes))
else
rup_pass2_arr assg max ys l changes` |> append_prog;
Theorem rup_pass2_arr_spec:
∀ls lsv changes changesv assg.
NUM max maxv ∧
LIST_TYPE (PAIR_TYPE NUM (PAIR_TYPE INT NUM)) ls lsv ∧
NUM l lv ∧
LIST_TYPE NUM changes changesv ∧
rup_pass2_list assg max ls l changes =
(changes2,assg2,T) ⇒
app (p : 'ffi ffi_proj)
^(fetch_v "rup_pass2_arr" (get_ml_prog_state()))
[assgv; maxv; lsv; lv; changesv]
(W8ARRAY assgv assg)
(POSTv v.
W8ARRAY assgv assg2 *
&LIST_TYPE NUM changes2 v
)
Proof
Induct>>rw[]>>
xcf"rup_pass2_arr"(get_ml_prog_state ())>>
gvs[LIST_TYPE_def,rup_pass2_list_def]
>- (
xmatch>>
xvar>>xsimpl)>>
PairCases_on`h`>>
gvs[PAIR_TYPE_def,rup_pass2_list_def]>>
xmatch>>
rpt xlet_autop>>
reverse xif>>gvs[]
>- (
xapp>>gvs[]>>
goal_assum drule>>
gvs[])>>
rpt(pairarg_tac>>gvs[])>>
rpt xlet_autop>>
xapp>>
xsimpl>>
gvs[mk_flag_def]>>
goal_assum drule>>
simp[LIST_TYPE_def]
QED
Definition w8z_def:
w8z = (0w: word8)
End
Definition w8o_def:
w8o = (1w: word8)
End
val w8z_v_thm = translate w8z_def;
val w8o_v_thm = translate w8o_def;
val resize_to_fit = process_topdecs`
fun resize_to_fit n assg =
if n < Word8Array.length assg
then assg
else
let val arr = Word8Array.array
(3* Word8Array.length assg + n + 1) w8z
val u = Word8Array.copy assg 0 (Word8Array.length assg) arr 0 in
arr
end` |> append_prog;
Theorem resize_to_fit_spec:
NUM n nv ⇒
app (p : 'ffi ffi_proj)
^(fetch_v "resize_to_fit" (get_ml_prog_state()))
[nv; assgv]
(W8ARRAY assgv assg)
(POSTv v. SEP_EXISTS assg2.
W8ARRAY v assg2 *
&(
resize_to_fit n assg = assg2
)
)
Proof
rw[]>>
xcf"resize_to_fit"(get_ml_prog_state ())>>
rpt xlet_autop>>
xif>>
simp[resize_to_fit_def]
>-
(xvar>>xsimpl)>>
assume_tac w8z_v_thm>>
rpt xlet_autop>>
xvar>>xsimpl>>
simp[w8z_def]
QED
val update_assg_arr = process_topdecs`
fun update_assg_arr assg lsn =
case lsn of (ls,n) =>
case rup_pass1_arr assg ls 0 [] 0 of (max,ls1,m) =>
let val assg1 = resize_to_fit m assg
val changes2 = rup_pass2_arr assg1 max ls1 n [] in
(changes2,assg1)
end` |> append_prog;
Theorem update_assg_arr_spec:
constraint_TYPE lsn lsnv ∧
update_assg_list assg lsn = (new_changes,assg2,T) ⇒
app (p : 'ffi ffi_proj)
^(fetch_v "update_assg_arr" (get_ml_prog_state()))
[assgv; lsnv]
(W8ARRAY assgv assg)
(POSTv v.
SEP_EXISTS v1 v2.
W8ARRAY v2 assg2 *
&(
v = Conv NONE [v1; v2] ∧
LIST_TYPE NUM new_changes v1
)
)
Proof
rw[]>>
xcf"update_assg_arr"(get_ml_prog_state ())>>
Cases_on`lsn`>>gvs[PAIR_TYPE_def]>>
xmatch>>
xlet_autop>>
gvs[update_assg_list_def]>>
rpt(pairarg_tac>>gvs[])>>
xlet_auto
>- (
xsimpl>>
simp[LIST_TYPE_def])>>
xmatch>>
rpt xlet_autop>>
xlet_auto>>
xlet_autop>>
gvs[]>>
xlet_auto
>- (
xsimpl>>
EVAL_TAC)>>
xcon>>xsimpl
QED
val get_rup_constraint_arr = process_topdecs`
fun get_rup_constraint_arr lno b fml n nc =
if n = 0 then nc
else
lookup_core_only_err_arr lno b fml n` |> append_prog;
Theorem get_rup_constraint_arr_spec:
NUM lno lnov ∧
NUM n nv ∧
BOOL b bv ∧
LIST_REL (OPTION_TYPE bconstraint_TYPE) fmlls fmllsv ∧
constraint_TYPE nc ncv
⇒
app (p : 'ffi ffi_proj)
^(fetch_v "get_rup_constraint_arr" (get_ml_prog_state()))
[lnov; bv; fmlv; nv; ncv]
(ARRAY fmlv fmllsv)
(POSTve
(λv.
ARRAY fmlv fmllsv *