-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathnpbcScript.sml
2092 lines (1929 loc) · 55.4 KB
/
npbcScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
Formalisation of normalised pseudo-boolean constraints
*)
open preamble pbcTheory;
val _ = new_theory "npbc";
val _ = numLib.temp_prefer_num();
Type var = “:num”
(* Normalized pseudoboolean constraints (xs,n) represents constraint xs ≥ n
An additional compactness assumption guarantees uniqueness *)
Type npbc = ``: ((int # var) list) #num``
(* semantics *)
Definition b2n_def[simp]:
b2n T = 1:num ∧
b2n F = 0:num
End
Definition eval_lit_def[simp]:
eval_lit w b (v:var) =
if b
then 1 - b2n (w v)
else b2n (w v)
End
Definition eval_term_def[simp]:
eval_term w (c,v) = Num (ABS c) * eval_lit w (c < 0) v
End
Definition satisfies_npbc_def:
satisfies_npbc w (xs,n) ⇔ SUM (MAP (eval_term w) xs) ≥ n
End
(* Tentative representation of PBF as a set of constraints *)
Definition satisfies_def:
satisfies w npbf ⇔
∀c. c ∈ npbf ⇒ satisfies_npbc w c
End
Definition satisfiable_def:
satisfiable npbf ⇔
∃w. satisfies w npbf
End
Definition unsatisfiable_def:
unsatisfiable npbf ⇔ ¬satisfiable npbf
End
Definition eval_obj_def:
eval_obj fopt w =
case fopt of NONE => 0
| SOME (f,c:int) => &(SUM (MAP (eval_term w) f)) + c
End
(* Optimality of an assignment
Here, the special case with no objective is treated as 0
*)
Definition optimal_def:
optimal w npbf fopt ⇔
satisfies w npbf ∧
∀w'.
satisfies w' npbf ⇒
eval_obj fopt w ≤ eval_obj fopt w'
End
Definition optimal_val_def:
optimal_val npbf fopt =
if satisfiable npbf then
SOME (eval_obj fopt (@w. optimal w npbf fopt))
else
NONE
End
(* compactness *)
Definition compact_def[simp]:
compact ((xs,n):npbc) ⇔
SORTED $< (MAP SND xs) ∧ (* implies that no var is mentioned twice *)
EVERY (λc. c ≠ 0) (MAP FST xs)
End
(* addition -- implementation *)
Definition offset_def:
offset c1 c2 =
if (c1 < 0) = (c2 < 0) then 0 else
let a1 = Num (ABS c1) in
let a2 = Num (ABS c2) in
if a1 <= a2 then a1 else a2
End
Definition add_terms_def:
add_terms c1 c2 v zs (k:num) =
let c = c1 + c2 in
if c = 0 then (zs, k + Num(ABS c1))
else
((c,v)::zs, k+ offset c1 c2)
End
Definition add_lists_def:
add_lists [] [] = ([],0) ∧
add_lists xs [] = (xs,0) ∧
add_lists [] ys = (ys,0) ∧
add_lists ((c,x)::xs) ((d,y)::ys) =
if x < y then
let (zs,n) = add_lists xs ((d,y)::ys) in
((c,x)::zs,n)
else if y < x then
let (zs,n) = add_lists ((c,x)::xs) ys in
((d,y)::zs,n)
else (* x = y *)
let (zs,n2) = add_lists xs ys in
add_terms c d x zs n2
End
Definition add_def:
add (xs,m) (ys,n) =
let (xs,d) = add_lists xs ys in
(xs,((m + n) - d))
End
(* addition -- proof *)
Theorem add_terms_thm:
add_terms x y v zs k = (zs1,d) ⇒
eval_term w (x,v) + eval_term w (y,v) + SUM (MAP (eval_term w) zs) + k =
SUM (MAP (eval_term w) zs1) + d
Proof
rw[add_terms_def,AllCaseEqs(),offset_def]>>
Cases_on`x`>>Cases_on`y`>>gvs[]>>
TRY (
fs[integerTheory.INT_ADD_CALCULATE]>>
Cases_on`w v`>>gs[]>> NO_TAC)
>- (
Cases_on`w v`>>gs[]>>
intLib.ARITH_TAC)>>
`n < n'` by intLib.ARITH_TAC>>
simp[integerTheory.INT_ADD_CALCULATE]>>
Cases_on`w v`>>gs[]
QED
Theorem add_lists_thm:
∀x y zs d.
add_lists x y = (zs,d) ⇒
SUM (MAP (eval_term w) x) + SUM (MAP (eval_term w) y) =
SUM (MAP (eval_term w) zs) + d
Proof
ho_match_mp_tac add_lists_ind \\ rw [] \\ gvs [add_lists_def]
\\ Cases_on ‘x < y’ \\ fs []
\\ Cases_on ‘y < x’ \\ fs []
\\ rpt (pairarg_tac \\ gvs [])
\\ `x = y` by gs[]
\\ drule_all add_terms_thm
\\ disch_then (qspec_then ‘w’ assume_tac)
\\ gs [SUM_APPEND]
QED
Theorem add_thm:
satisfies_npbc w c1 ∧ satisfies_npbc w c2 ⇒ satisfies_npbc w (add c1 c2)
Proof
Cases_on ‘c1’ \\ Cases_on ‘c2’ \\ fs [add_def]
\\ pairarg_tac \\ fs [] \\ rw []
\\ fs [satisfies_npbc_def]
\\ drule_all add_lists_thm
\\ disch_then (qspec_then ‘w’ assume_tac)
\\ fs []
QED
(* addition -- compactness *)
Triviality add_lists_sorted_lemma:
∀l1 l2 h t d x.
add_lists l1 l2 = (h::t,d) ∧
SORTED $< (x::MAP SND l1) ∧
SORTED $< (x::MAP SND l2) ⇒
x < SND h
Proof
ho_match_mp_tac add_lists_ind \\ rpt strip_tac
\\ fs [add_lists_def]
THEN1 gvs []
THEN1 gvs []
\\ Cases_on ‘x < y’ \\ fs []
\\ Cases_on ‘y < x’ \\ fs []
\\ rpt (pairarg_tac \\ gvs [])
\\ gvs [AllCaseEqs(),add_terms_def |> DefnBase.one_line_ify NONE]
\\ ‘x = y’ by fs [] \\ gvs []
\\ last_x_assum drule_all \\ fs []
QED
Theorem add_lists_sorted:
∀l l' xs d.
EVERY (λc. c ≠ 0) (MAP FST l) ∧ EVERY (λc. c ≠ 0) (MAP FST l') ∧
SORTED $< (MAP SND l) ∧ SORTED $< (MAP SND l') ∧
add_lists l l' = (xs,d) ⇒
SORTED $< (MAP SND xs) ∧ EVERY (λc. c ≠ 0) (MAP FST xs)
Proof
ho_match_mp_tac add_lists_ind
\\ REVERSE (rpt strip_tac)
\\ fs [add_lists_def] \\ gvs []
\\ imp_res_tac SORTED_TL
THEN1
(Cases_on ‘x < y’ \\ fs [] THEN1 (pairarg_tac \\ gvs [])
\\ Cases_on ‘y < x’ \\ fs [] THEN1 (pairarg_tac \\ gvs [])
\\ rpt (pairarg_tac \\ gvs [])
\\ gvs [AllCaseEqs(),add_terms_def |> DefnBase.one_line_ify NONE])
\\ Cases_on ‘x < y’ \\ fs []
THEN1
(pairarg_tac \\ gvs [] \\ Cases_on ‘zs’ \\ fs []
\\ drule add_lists_sorted_lemma \\ fs [])
\\ Cases_on ‘y < x’ \\ fs []
THEN1
(pairarg_tac \\ gvs [] \\ Cases_on ‘zs’ \\ fs []
\\ drule add_lists_sorted_lemma \\ fs [])
\\ rpt (pairarg_tac \\ gvs [])
\\ gvs [AllCaseEqs(),add_terms_def |> DefnBase.one_line_ify NONE]
\\ Cases_on ‘zs’ \\ fs []
\\ ‘x = y’ by fs [] \\ gvs []
\\ drule_all add_lists_sorted_lemma
\\ Cases_on ‘h’ \\ fs []
QED
Theorem compact_add:
compact c1 ∧ compact c2 ⇒ compact (add c1 c2)
Proof
Cases_on ‘c1’ \\ Cases_on ‘c2’ \\ fs [add_def]
\\ pairarg_tac \\ fs [] \\ metis_tac [add_lists_sorted]
QED
(* faster version of add_lists *)
Definition add_lists'_def:
add_lists' xs ys zs n =
case xs of
| [] => (REV zs ys,n)
| (x::xs1) =>
case ys of
| [] => (REV zs xs,n)
| (y::ys1) =>
let (cx,xn) = x in
let (cy,yn) = y in
if xn < yn then add_lists' xs1 ys (x::zs) n else
if yn < xn then add_lists' xs ys1 (y::zs) n else
let (zs1,n1) = add_terms cx cy xn zs n in
add_lists' xs1 ys1 zs1 n1
End
Theorem add_lists'_thm:
add_lists xs ys = add_lists' xs ys [] 0
Proof
qsuff_tac ‘∀xs ys zs n.
add_lists' xs ys zs n =
let (zs0,n0) = add_lists xs ys in
(REVERSE zs ++ zs0, n0+n)’
>- (fs [] \\ pairarg_tac \\ fs [])
\\ ho_match_mp_tac add_lists'_ind
\\ rpt gen_tac \\ strip_tac
\\ once_rewrite_tac [add_lists'_def]
\\ Cases_on ‘xs’ \\ fs [add_lists_def,REV_REVERSE_LEM]
\\ Cases_on ‘ys’ \\ fs [add_lists_def,REV_REVERSE_LEM]
\\ rename [‘add_lists (h1::_) (h2::_)’]
\\ PairCases_on ‘h1’ \\ PairCases_on ‘h2’ \\ fs []
\\ fs [add_lists_def,REV_REVERSE_LEM]
\\ rpt (IF_CASES_TAC \\ fs [])
\\ rpt (pairarg_tac \\ fs [])
\\ gvs [DefnBase.one_line_ify NONE add_terms_def,AllCaseEqs()]
QED
(* division *)
Definition IQ_def:
IQ (i:int) (j:int) =
if 0 < j then
if 0 ≤ i then &(Num i DIV Num j):int else -&(Num (-i) DIV Num j)
else if 0 ≤ i then -&(Num i DIV Num (-j))
else &(Num (-i) DIV Num (-j))
End
Definition div_ceiling_def:
div_ceiling (m:int) (n:num) =
IQ
(if m < 0
then m-(&n-1)
else m+ (&n - 1)) &n
End
Theorem IQ_quot:
j ≠ 0 ⇒
IQ i j = i quot j
Proof
simp[integerTheory.int_quot,IQ_def]
QED
Theorem div_ceiling_compute:
k ≠ 0 ⇒
div_ceiling (&n) k = & (n \\ k) ∧
div_ceiling (-&n) k = - & (n \\ k)
Proof
fs [div_ceiling_def,CEILING_DIV_def,IQ_quot] \\ rw []
\\ Cases_on ‘k’ \\ fs []
\\ fs [ADD1,integerTheory.INT_ADD_CALCULATE,
integerTheory.INT_SUB_CALCULATE,DIV_EQ_X]
\\ rw []
\\ fs [ADD1,integerTheory.INT_ADD_CALCULATE,
integerTheory.INT_SUB_CALCULATE,DIV_EQ_X]
\\ qmatch_goalsub_abbrev_tac ‘_ DIV k’
\\ ‘0 < k’ by fs [Abbr‘k’]
\\ drule DIVISION
\\ disch_then $ qspec_then ‘n+n'’ mp_tac
\\ drule DIVISION
\\ disch_then $ qspec_then ‘n’ mp_tac
\\ strip_tac
\\ rewrite_tac [LEFT_ADD_DISTRIB,RIGHT_ADD_DISTRIB]
\\ decide_tac
QED
Theorem div_ceiling_sign:
n ≠ 0 ⇒
(div_ceiling m n < 0 ⇔ m < 0)
Proof
Cases_on`m` \\ fs[div_ceiling_compute,IQ_quot]
\\ fs [CEILING_DIV]
\\ rw [] \\ Cases_on ‘1 < n’
\\ gvs [DIV_EQ_0]
\\ ‘n = 1’ by fs [] \\ fs []
QED
Theorem DIV_CEILING_EQ_0:
n ≠ 0 ⇒ (m \\ n = 0 ⇔ m = 0)
Proof
fs [CEILING_DIV,IQ_quot]
\\ Cases_on ‘m = 0’ \\ fs [ZERO_DIV]
\\ rw [] \\ Cases_on ‘1 < n’
\\ gvs [DIV_EQ_0]
\\ ‘n = 1’ by fs [] \\ fs []
QED
Definition divide_def:
divide ((l,n):npbc) k =
(MAP (λ(c,v). (div_ceiling c k, v)) l,n \\ k)
End
Theorem divide_thm:
satisfies_npbc w c ∧ k ≠ 0 ⇒ satisfies_npbc w (divide c k)
Proof
Cases_on ‘c’ \\ fs [divide_def]
\\ rw [satisfies_npbc_def,GREATER_EQ,CEILING_DIV_LE_X]
\\ irule LESS_EQ_TRANS
\\ first_x_assum $ irule_at Any
\\ Induct_on ‘q’ \\ fs [FORALL_PROD]
\\ fs [LEFT_ADD_DISTRIB] \\ rw []
\\ irule (DECIDE “m ≤ m1 ∧ n ≤ n1 ⇒ m+n ≤ m1+n1:num”)
\\ fs[] \\ Cases_on ‘p_1’ \\ gvs [div_ceiling_compute,DIV_CEILING_EQ_0]
\\ fs [LE_MULT_CEILING_DIV]
QED
Theorem div_ceiling_eq_0:
k ≠ 0 ⇒ (div_ceiling c k = 0 ⇔ c = 0)
Proof
fs [div_ceiling_def,IQ_quot]
\\ Cases_on ‘c = 0’ \\ fs []
\\ Cases_on ‘k’
\\ fs [ADD1,integerTheory.INT_ADD_CALCULATE,
integerTheory.INT_SUB_CALCULATE,DIV_EQ_X]
\\ Cases_on ‘c’
\\ fs [ADD1,integerTheory.INT_ADD_CALCULATE,
integerTheory.INT_SUB_CALCULATE,DIV_EQ_X]
\\ rw []
\\ fs [ADD1,integerTheory.INT_ADD_CALCULATE,
integerTheory.INT_SUB_CALCULATE,DIV_EQ_X]
QED
Theorem compact_divide:
compact c ∧ k ≠ 0 ⇒ compact (divide c k)
Proof
Cases_on`c` \\
rename1`(l,r)` \\
rw[compact_def,divide_def]
THEN1 (Induct_on `l` \\ fs [FORALL_PROD]
\\ Cases_on ‘l’ \\ fs []
\\ Cases_on ‘t’ \\ fs []
\\ PairCases_on ‘h’ \\ fs [])
\\ fs[EVERY_MAP,EVERY_MEM]
\\ rw[] \\ first_x_assum drule
\\ pairarg_tac \\ fs[]
\\ fs[div_ceiling_eq_0]
QED
(* negation *)
Definition not_def:
not ((l,n):npbc) =
(MAP (λ(c,l). (-c,l)) l,
SUM (MAP (λi. Num (ABS (FST i))) l) + 1 - n)
End
Theorem ADD_SUB:
B ≥ C ⇒
A + (B - C) = A + B - C
Proof
rw[]
QED
Theorem ABS_coeff_ge:
SUM (MAP (λi. Num (ABS (FST i))) l) ≥ SUM (MAP (eval_term w) l)
Proof
Induct_on`l`>>fs[FORALL_PROD]>>rw[]
\\ Cases_on ‘w p_2’ \\ fs []
QED
Theorem not_lhs:
SUM (MAP (eval_term w) (MAP (λ(c,l). (-c,l)) l)) =
SUM (MAP (λi. Num (ABS (FST i))) l) -
SUM (MAP (eval_term w) l)
Proof
Induct_on`l`>>fs[FORALL_PROD]>>rw[]
>- intLib.ARITH_TAC
\\ Cases_on ‘w p_2’ \\ fs []
\\ TRY (last_x_assum (fn th => rewrite_tac [GSYM th]) \\ gvs [] \\ NO_TAC)
\\ Cases_on ‘p_1’ \\ gvs []
\\ DEP_REWRITE_TAC[ADD_SUB]
\\ metis_tac[ABS_coeff_ge]
QED
Theorem not_thm:
satisfies_npbc w (not c) ⇔ ~satisfies_npbc w c
Proof
Cases_on ‘c’ \\ fs [not_def,satisfies_npbc_def,GREATER_EQ]
\\ simp[not_lhs]
\\ DEP_REWRITE_TAC[ADD_SUB]
\\ simp[ABS_coeff_ge]
QED
Theorem compact_not:
compact c ⇒ compact (not c)
Proof
Cases_on ‘c’ \\
rename1`(l,r)` \\
reverse (rw [not_def,compact_def])
THEN1 gvs [EVERY_MEM, MEM_MAP, PULL_EXISTS, FORALL_PROD]
\\ Induct_on ‘l’ \\ fs [FORALL_PROD]
\\ Cases_on ‘l’ \\ fs []
\\ Cases_on ‘t’ \\ fs []
\\ PairCases_on ‘h’ \\ fs []
QED
(* multiplication *)
Definition multiply_def:
multiply ((l,n):npbc) k =
if k = 0 then ([],0) else
(MAP (λ(c,v). (c * & k, v)) l,n * k)
End
Theorem multiply_thm:
satisfies_npbc w c ⇒ satisfies_npbc w (multiply c k)
Proof
Cases_on ‘c’ \\
rename1`(l,r)` \\ fs [multiply_def]
\\ rw [satisfies_npbc_def,GREATER_EQ]
\\ drule LESS_MONO_MULT
\\ disch_then (qspec_then`k` mp_tac)
\\ REWRITE_TAC [Once MULT_COMM]
\\ strip_tac
\\ irule LESS_EQ_TRANS
\\ first_x_assum $ irule_at Any
\\ pop_assum kall_tac
\\ Induct_on`l` \\ simp[] \\ Cases \\ rw[]
\\ Cases_on ‘q’ \\ gvs []
\\ fs [ADD1,integerTheory.INT_MUL_CALCULATE]
\\ Cases_on ‘k’ \\ fs [MULT_CLAUSES,LEFT_ADD_DISTRIB,RIGHT_ADD_DISTRIB]
QED
Theorem compact_multiply:
compact c ⇒ compact (multiply c k)
Proof
Cases_on ‘c’ \\
rename1`(l,r)` \\
reverse (rw [multiply_def,compact_def])
THEN1 gvs [EVERY_MEM, MEM_MAP, PULL_EXISTS, FORALL_PROD]
\\ Induct_on ‘l’ \\ fs [FORALL_PROD]
\\ Cases_on ‘l’ \\ fs []
\\ Cases_on ‘t’ \\ fs []
\\ PairCases_on ‘h’ \\ fs []
QED
(* saturation *)
Definition abs_min_def:
abs_min c n =
if Num(ABS c) ≤ n then
c
else if c < 0 then -&n else &n
End
Definition saturate_def:
saturate (l,n) =
if n = 0 then ([],n)
else (MAP (λ(c,v). (abs_min c n, v)) l, n)
End
Theorem eval_lit_bool:
eval_lit w r n = 0 ∨ eval_lit w r n = 1
Proof
Cases_on`r` \\ rw[eval_lit_def]
\\ Cases_on`w n` \\ rw[b2n_def]
QED
Theorem saturate_thm:
satisfies_npbc w c ⇒ satisfies_npbc w (saturate c)
Proof
Cases_on ‘c’ \\ rename1`(l,n)` \\ fs [saturate_def]
\\ rw [satisfies_npbc_def,GREATER_EQ]
\\ `∀a.
n ≤ SUM (MAP (eval_term w) l) + a ⇒
n ≤ SUM (MAP (eval_term w) (MAP (λ(c,v). (abs_min c n,v)) l)) + a` by (
pop_assum kall_tac
\\ Induct_on`l` \\ simp[] \\ Cases
\\ simp[]
\\ rw[]
\\ ONCE_REWRITE_TAC[ADD_COMM]
\\ ONCE_REWRITE_TAC[GSYM ADD_ASSOC]
\\ first_x_assum match_mp_tac
\\ fs[abs_min_def]
\\ rw[] >> fs[]
\\ Cases_on`w r` \\ fs[b2n_def]
\\ rfs[] )
\\ pop_assum (qspec_then`0` assume_tac) \\ fs[]
QED
Theorem compact_saturate:
compact c ⇒ compact (saturate c)
Proof
Cases_on ‘c’ \\ rename1`(l,n)` \\
reverse (rw [saturate_def,compact_def])
THEN1 (
gvs [EVERY_MEM, MEM_MAP, PULL_EXISTS, FORALL_PROD] \\
rw[abs_min_def] )
\\ Induct_on ‘l’ \\ fs [FORALL_PROD]
\\ Cases_on ‘l’ \\ fs []
\\ Cases_on ‘t’ \\ fs []
\\ PairCases_on ‘h’ \\ fs []
QED
(*
Definition weaken_aux_def:
(weaken_aux v [] n = ([],n)) ∧
(weaken_aux v ((c:int,l)::xs) n =
let (xs',n') = weaken_aux v xs n in
if l = v then
(xs',n'-Num(ABS c))
else
((c,l)::xs',n'))
End
*)
(* Faster weaken_aux, if the constraint is compact *)
Definition weaken_aux_def:
(weaken_aux v [] n = ([],n)) ∧
(weaken_aux v ((c:int,l)::xs) n =
if l = v then
(xs,n-Num(ABS c))
else
let (xs',n') = weaken_aux v xs n in
((c,l)::xs',n'))
End
(* weakening *)
Definition weaken_def:
weaken (l,n) v = weaken_aux v l n
End
Theorem weaken_aux_theorem:
∀v l n l' n' a.
n ≤ SUM (MAP (eval_term w) l) + a ∧
weaken_aux v l n = (l',n') ⇒
n' ≤ SUM (MAP (eval_term w) l') + a
Proof
ho_match_mp_tac weaken_aux_ind \\ rw[weaken_aux_def]
\\ rpt (pairarg_tac \\ fs[])
\\ every_case_tac \\ fs[] \\ rw[]
\\ qmatch_goalsub_abbrev_tac`SUM A`
\\ TRY(qmatch_goalsub_abbrev_tac`B + SUM A`)
\\ TRY(qmatch_goalsub_abbrev_tac`SUM A + B`)
\\ qmatch_goalsub_abbrev_tac` _ ≤ rhs`
\\ `rhs = (a + B) + SUM A` by
(unabbrev_all_tac>>
simp[])
\\ pop_assum SUBST1_TAC
>- (
first_x_assum match_mp_tac
\\ fs[])
\\ fs[]
\\ Cases_on`w l`
\\ fs[Abbr`rhs`]
QED
(* set a = 0 *)
val weaken_aux_theorem0 =
weaken_aux_theorem |>
CONV_RULE (RESORT_FORALL_CONV (sort_vars ["a"])) |>
Q.SPEC`0` |> SIMP_RULE std_ss [];
Theorem weaken_thm:
satisfies_npbc w c ⇒ satisfies_npbc w (weaken c v)
Proof
Cases_on ‘c’ \\ fs [weaken_def]
\\ Cases_on`weaken_aux v q r`
\\ rw [satisfies_npbc_def,GREATER_EQ]
\\ match_mp_tac weaken_aux_theorem0
\\ metis_tac[]
QED
Theorem weaken_aux_contains:
∀v ls n ls' n' x.
weaken_aux v ls n = (ls',n') ∧
MEM x ls' ⇒ MEM x ls
Proof
ho_match_mp_tac weaken_aux_ind \\ rw[weaken_aux_def]
\\ pairarg_tac \\ fs[]
\\ every_case_tac \\ fs[] \\ rw[]
\\ fs[]
QED
Theorem SORTED_weaken_aux:
∀v ls n ls' n'.
SORTED $< (MAP SND ls) ∧
weaken_aux v ls n = (ls',n') ⇒
SORTED $< (MAP SND ls')
Proof
ho_match_mp_tac weaken_aux_ind \\ rw[weaken_aux_def]
\\ rpt (pairarg_tac \\ fs[])
\\ every_case_tac \\ fs[] \\ rw[]
>-
metis_tac[SORTED_TL]
\\ qpat_x_assum `SORTED _ (_ :: _)` mp_tac
\\ DEP_REWRITE_TAC [SORTED_EQ] \\ rw[]
\\ drule weaken_aux_contains
\\ metis_tac[MEM_MAP]
QED
Theorem compact_weaken:
compact c ⇒ compact (weaken c v)
Proof
Cases_on ‘c’ \\ rw[weaken_def]
\\ Cases_on`weaken_aux v q r`
\\ rw[]
>-
metis_tac[SORTED_weaken_aux]
\\ fs[EVERY_MEM,FORALL_PROD]
\\ metis_tac[weaken_aux_contains,MEM_MAP]
QED
(* clean up *)
Definition partition_def:
partition [] ys zs = (ys,zs) ∧
partition (x::xs) ys zs = partition xs zs (x::ys)
End
Theorem partition_length:
∀xs ys zs ys1 zs1.
(ys1,zs1) = partition xs ys zs ⇒
LENGTH ys1 + LENGTH zs1 = LENGTH xs + LENGTH zs + LENGTH ys ∧
(ys ≠ [] ∧ zs ≠ [] ⇒ ys1 ≠ [] ∧ zs1 ≠ [])
Proof
Induct \\ rw [partition_def]
\\ last_x_assum drule \\ fs []
QED
Theorem partition_sum:
∀xs ys zs ys1 zs1.
partition xs ys zs = (ys1,zs1) ⇒
SUM (MAP (eval_term w) xs) + SUM (MAP (eval_term w) ys) + SUM (MAP (eval_term w) zs) =
SUM (MAP (eval_term w) ys1) + SUM (MAP (eval_term w) zs1)
Proof
Induct \\ rw [partition_def] \\ res_tac \\ fs []
QED
Definition clean_up_def:
clean_up [] = ([],0) ∧
clean_up [x] = ([x],0) ∧
clean_up (x::y::xs) =
let (ys,zs) = partition xs [x] [y] in
let (ys1,k1) = clean_up ys in
let (ys2,k2) = clean_up zs in
let (res,k3) = add_lists ys1 ys2 in
(res,k1+k2+k3)
Termination
WF_REL_TAC ‘measure LENGTH’ \\ rw []
\\ drule partition_length \\ fs []
\\ Cases_on ‘ys’ \\ Cases_on ‘zs’ \\ fs []
End
Theorem clean_up_thm:
∀xs ys d.
clean_up xs = (ys,d) ⇒
SUM (MAP (eval_term w) xs) = SUM (MAP (eval_term w) ys) + d
Proof
ho_match_mp_tac clean_up_ind \\ rw []
\\ gvs [clean_up_def]
\\ rpt (pairarg_tac \\ gvs [])
\\ drule_then (qspec_then ‘w’ assume_tac) partition_sum
\\ drule_then (qspec_then ‘w’ assume_tac) add_lists_thm
\\ gvs []
QED
Theorem EVERY_partition:
∀xs ys zs ys1 zs1 P.
partition xs ys zs = (ys1,zs1) ∧ EVERY P xs ∧ EVERY P ys ∧ EVERY P zs ⇒
EVERY P ys1 ∧ EVERY P zs1
Proof
Induct \\ rw [partition_def]
\\ res_tac \\ fs []
QED
Theorem clean_up_sorted:
∀xs ys d.
clean_up xs = (ys,d) ∧ EVERY (λc. c ≠ 0) (MAP FST xs) ⇒
SORTED $< (MAP SND ys) ∧ EVERY (λc. c ≠ 0) (MAP FST ys)
Proof
ho_match_mp_tac clean_up_ind \\ rw []
\\ gvs [clean_up_def]
\\ rpt (pairarg_tac \\ full_simp_tac std_ss []) \\ gvs []
\\ simp[EVERY_MAP]
\\ imp_res_tac EVERY_partition \\ gvs []
\\ fs[AND_IMP_INTRO]
\\ drule_at (Pos last) add_lists_sorted
\\ ntac 2 (last_x_assum mp_tac)
\\ fs[EVERY_MAP]
QED
(* substitution/instantiation *)
Definition assign_def:
assign f (w:num->bool) (n:num) =
case f n of
| NONE => w n
| SOME (INL b) => b (* concrete value b *)
| SOME (INR (Pos v)) => w v (* subst with var v *)
| SOME (INR (Neg v)) => ~ w v (* subst with negation of var v *)
End
Definition is_Pos_def[simp]:
is_Pos (i:int) = (0 ≤ i)
End
Definition subst_aux_def:
subst_aux f [] = ([],[],0) ∧
subst_aux f ((c,l)::rest) =
let (old,new,k) = subst_aux f rest in
case f l of
| NONE => ((c,l)::old,new,k)
| SOME (INL b) => (old,new,if is_Pos c = b then k + Num (ABS c) else k)
| SOME (INR (Pos n)) => (old,(c,n)::new,k)
| SOME (INR (Neg n)) => (old,(0-c,n)::new,k)
End
Definition subst_lhs_def:
subst_lhs f l =
let (old,new,k) = subst_aux f l in
let (sorted,k2) = clean_up new in
let (result,k3) = add_lists old sorted in
(result, k + k2 + k3)
End
Definition subst_def:
subst f (l,n) =
let (result,k) = subst_lhs f l in
(result, n - k)
End
Theorem subst_lhs_thm:
subst_lhs f l = (result,k) ⇒
SUM (MAP (eval_term (assign f w)) l) =
SUM (MAP (eval_term w) result) + k
Proof
fs [subst_lhs_def]
\\ rpt (pairarg_tac \\ gvs [])
\\ rw[]
\\ qsuff_tac
‘∀l old new k.
subst_aux f l = (old,new,k) ⇒
SUM (MAP (eval_term (assign f w)) l) =
k + SUM (MAP (eval_term w) old ++ MAP (eval_term w) new)’
>- (
disch_then $ drule_then assume_tac \\ fs [SUM_APPEND]
\\ drule_then (qspec_then ‘w’ assume_tac) clean_up_thm
\\ drule_then (qspec_then ‘w’ assume_tac) add_lists_thm
\\ gvs [])
\\ Induct \\ fs [subst_aux_def,FORALL_PROD]
\\ pairarg_tac \\ fs []
\\ rw []
\\ Cases_on ‘p_1’ \\ gvs []
\\ every_case_tac \\ gvs [assign_def]
\\ fs[SUM_APPEND]
\\ rename1`b2n (w a)`
\\ Cases_on ‘w a’ \\ fs [SUM_APPEND]
QED
Theorem subst_thm:
satisfies_npbc w (subst f c) = satisfies_npbc (assign f w) c
Proof
Cases_on ‘c’ \\
rename1‘(l,n)’ \\
fs [satisfies_npbc_def,subst_def] \\
pairarg_tac \\ fs[] \\
drule subst_lhs_thm \\ strip_tac \\
simp[satisfies_npbc_def]
QED
Definition subst_opt_aux_acc_def:
subst_opt_aux_acc f [] a1 a2 k same =
(if same then ([],[],k,T) else (REVERSE a1,REVERSE a2,k,same)) ∧
subst_opt_aux_acc f ((c,l)::rest) a1 a2 k same =
case f l of
| NONE =>
subst_opt_aux_acc f rest ((c,l)::a1) a2 k same
| SOME (INL b) =>
if is_Pos c = b then
subst_opt_aux_acc f rest a1 a2 (k + Num (ABS c)) same
else
subst_opt_aux_acc f rest a1 a2 k F
| SOME (INR (Pos n)) =>
subst_opt_aux_acc f rest a1 ((c,n)::a2) k F
| SOME (INR (Neg n)) =>
subst_opt_aux_acc f rest a1 ((0-c,n)::a2) k F
End
(* The returned flag is T if any literal touched by the
constraint is itself assigned to T under the substitution *)
Definition subst_opt_aux_def:
subst_opt_aux f [] = ([],[],0,T) ∧
subst_opt_aux f ((c,l)::rest) =
let (old,new,k,same) = subst_opt_aux f rest in
case f l of
| NONE => ((c,l)::old,new,k,same)
| SOME (INL b) =>
if is_Pos c = b then
(old,new, k + Num (ABS c), same)
else
(old,new, k, F)
| SOME (INR (Pos n)) => (old,(c,n)::new,k,F)
| SOME (INR (Neg n)) => (old,(0-c,n)::new,k,F)
End
Theorem subst_opt_aux_acc:
∀xs f a1 a2 k b.
subst_opt_aux_acc f xs a1 a2 k b =
let (x1,x2,k1,b1) = subst_opt_aux f xs in
if b ∧ b1 then ([],[],k + k1, b ∧ b1) else
(REVERSE a1 ++ x1, REVERSE a2 ++ x2, k + k1, b ∧ b1)
Proof
Induct
\\ fs [subst_opt_aux_acc_def,subst_opt_aux_def,FORALL_PROD]
\\ rw [] \\ CASE_TAC \\ fs []
>- rpt (pairarg_tac \\ gvs [] \\ IF_CASES_TAC \\ fs [])
\\ CASE_TAC \\ fs []
>- (IF_CASES_TAC \\ fs [] \\ rpt (pairarg_tac \\ gvs []))
\\ CASE_TAC \\ fs []
\\ rpt (pairarg_tac \\ gvs [])
QED
(* Computes the LHS term of the slack of a constraint under
a partial assignment p (list of literals) *)
Definition lslack_def:
lslack ls =
SUM (MAP (Num o ABS o FST) ls)
End
Definition check_contradiction_def:
check_contradiction ((ls,num):npbc) ⇔
lslack ls < num
End
Theorem lslack_thm:
∀l. SUM (MAP (eval_term w) l) ≤ lslack l
Proof
Induct \\ gvs [lslack_def,FORALL_PROD]
\\ rw [] \\ Cases_on ‘w p_2’ \\ gvs []
QED
Theorem check_contradiction_unsat:
check_contradiction c ⇒
¬satisfies_npbc w c
Proof
Cases_on`c`>>
rename1`(l,n)`>>
rw[check_contradiction_def,satisfies_npbc_def,GREATER_EQ,GSYM NOT_LESS]>>
irule LESS_EQ_LESS_TRANS >>
pop_assum $ irule_at Any >>
fs [lslack_thm]
QED
(* constraint c1 implies constraint c2 *)
Definition imp_def:
imp c1 c2 ⇔
check_contradiction (add c1 (not c2))
End
Theorem imp_thm:
imp c1 c2 ∧
satisfies_npbc w c1 ⇒ satisfies_npbc w c2
Proof
rw[imp_def]>>
drule add_thm>>
strip_tac>>
CCONTR_TAC>>
fs[GSYM not_thm]>>
first_x_assum drule>>
drule check_contradiction_unsat>>
metis_tac[]
QED
Definition subst_opt_def:
subst_opt f (l,n) =
let (old,new,k,same) = subst_opt_aux_acc f l [] [] 0 T in
if same then NONE else
let (sorted,k2) = clean_up new in
let (result,k3) = add_lists old sorted in
let res = (result,n - (k + k2 + k3)) in
if SND res = 0 ∨ imp (l,n) res then NONE
else SOME res
End
Theorem subst_opt_eq:
subst_opt f (l,n) =
let (old,new,k,same) = subst_opt_aux f l in
if same then NONE else
let (sorted,k2) = clean_up new in
let (result,k3) = add_lists old sorted in
let res = (result,n - (k + k2 + k3)) in
if SND res = 0 ∨ imp (l,n) res then NONE
else SOME res
Proof
fs [subst_opt_aux_acc,subst_opt_def]
\\ rpt (pairarg_tac \\ fs [])
\\ ‘same = same'’ by (every_case_tac \\ fs [])
\\ gvs [] \\ IF_CASES_TAC \\ gvs []
QED
Theorem subst_opt_aux_thm_1:
∀rest f old new k same.
subst_opt_aux f rest = (old,new,k,same) ⇒
subst_aux f rest = (old,new,k)
Proof
Induct \\ fs [FORALL_PROD,subst_aux_def,subst_opt_aux_def]
\\ rpt strip_tac
\\ rpt (pairarg_tac \\ fs [])
\\ gvs [AllCaseEqs()]
\\ res_tac \\ gvs []
\\ CCONTR_TAC \\ gvs []
QED
Theorem subst_opt_SOME:
subst_opt f c = SOME v ⇒ v = subst f c
Proof
Cases_on ‘c’ \\ fs [subst_opt_eq,subst_def,subst_lhs_def]
\\ rpt (pairarg_tac \\ fs [])
\\ drule_all subst_opt_aux_thm_1
\\ rw [] \\ gvs []
QED
Theorem subst_opt_aux_thm_2:
∀rest f old new k.
subst_opt_aux f rest = (old,new,k,T) ⇒
SUM (MAP (eval_term (assign f w)) rest) ≥ SUM (MAP (eval_term w) rest)
Proof
Induct \\ fs[FORALL_PROD,subst_opt_aux_def]
\\ rpt strip_tac
\\ rpt (pairarg_tac \\ fs [])
\\ gvs [AllCaseEqs()]
\\ Cases_on ‘p_1’ \\ gvs []
\\ first_x_assum drule
\\ gvs [assign_def]
\\ Cases_on`w p_2` \\ gvs [assign_def]
QED
Theorem subst_opt_NONE:
subst_opt f c = NONE ⇒
satisfies_npbc w c ⇒ satisfies_npbc w (subst f c)
Proof
Cases_on ‘c’ \\ fs [subst_opt_eq]
\\ rpt (pairarg_tac \\ fs [])
\\ rw[]
>- (
simp[subst_def,subst_lhs_def]>>
rpt (pairarg_tac \\ fs [])>>
drule subst_opt_aux_thm_1>>
rw[]>>fs[]>>rw[]>>
simp[satisfies_npbc_def]>>
gvs[])
>- (
simp[subst_def,subst_lhs_def]>>
rpt (pairarg_tac \\ fs [])>>
drule subst_opt_aux_thm_1>>
rw[]>>fs[]>>rw[]>>
drule imp_thm>>
disch_then drule>>
fs[])
\\ fs[subst_thm]