-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathorderEncodingBoolScript.sml
228 lines (206 loc) · 7.57 KB
/
orderEncodingBoolScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
(*
Extend pseudoBoolExp with OrderAxiom, to prepare for order encoding
of natural numbers.
*)
open preamble miscTheory quantifierExpTheory boolExpToCnfTheory cnfTheory;
val _ = new_theory "orderEncodingBool";
(* ----------------------------- Types --------------------------- *)
Datatype:
orderBool =
OTrue
| OFalse
| OLit literal
| ONot orderBool
| OAnd orderBool orderBool
| OOr orderBool orderBool
| OImpl orderBool orderBool
| OIff orderBool orderBool
| OAll name orderBool
| OEx name orderBool
| OLeastOne (orderBool list) (* At least one *)
| OMostOne (orderBool list) (* At most one *)
| OExactlyOne (orderBool list) (* Exactly one *)
| OOrderAxiom (name list)
End
(* OOrderAxiom [a, b, c] = FFT or FTT or TTT *)
Definition orderBool_size':
(orderBool_size' OTrue = 1:num) ∧
(orderBool_size' OFalse = 1) ∧
(orderBool_size' (OLit l) = 1) ∧
(orderBool_size' (ONot b) = 1 + orderBool_size' b) ∧
(orderBool_size' (OAnd b1 b2) =
1 + (orderBool_size' b1 + orderBool_size' b2)) ∧
(orderBool_size' (OOr b1 b2) =
1 + (orderBool_size' b1 + orderBool_size' b2)) ∧
(orderBool_size' (OImpl b1 b2) =
1 + (orderBool_size' b1 + orderBool_size' b2)) ∧
(orderBool_size' (OIff b1 b2) =
1 + (orderBool_size' b1 + orderBool_size' b2)) ∧
(orderBool_size' (OAll x b) =
1 + 4 * (orderBool_size' b)) ∧
(orderBool_size' (OEx x b) =
1 + 4 * (orderBool_size' b)) ∧
(orderBool_size' (OLeastOne []) = 1) ∧
(orderBool_size' (OLeastOne (b::bs)) =
1 + orderBool_size' b + orderBool_size' (OLeastOne bs)) ∧
(orderBool_size' (OMostOne []) = 1) ∧
(orderBool_size' (OMostOne (b::bs)) =
1 + orderBool_size' b + orderBool_size' (OMostOne bs)) ∧
(orderBool_size' (OExactlyOne []) = 2) ∧
(orderBool_size' (OExactlyOne (b::bs)) =
3 + orderBool_size' b * 2 + orderBool_size' (OExactlyOne bs)) ∧
(orderBool_size' (OOrderAxiom xs) = 1)
End
(* ----------------------------- Evaluation --------------------------- *)
Definition eval_orderAxiom_def:
eval_orderAxiom (w:assignment) [] = F ∧ (* Last element has to be T *)
eval_orderAxiom w (x::xs) =
if w x
then EVERY w xs
else eval_orderAxiom w xs
End
Definition eval_orderBool_def:
eval_orderBool (w: assignment) OTrue = T ∧
eval_orderBool w OFalse = F ∧
eval_orderBool w (OLit l) = eval_literal w l ∧
eval_orderBool w (ONot b) = ¬ (eval_orderBool w b) ∧
eval_orderBool w (OAnd b1 b2) =
(eval_orderBool w b1 ∧ eval_orderBool w b2) ∧
eval_orderBool w (OOr b1 b2) =
(eval_orderBool w b1 ∨ eval_orderBool w b2) ∧
eval_orderBool w (OImpl b1 b2) =
(eval_orderBool w b1 ⇒ eval_orderBool w b2) ∧
eval_orderBool w (OIff b1 b2) =
(eval_orderBool w b1 ⇔ eval_orderBool w b2) ∧
eval_orderBool w (OAll x b) =
(∀ v. eval_orderBool ((x =+ v) w) b) ∧
eval_orderBool w (OEx x b) =
(∃ v. eval_orderBool ((x =+ v) w) b) ∧
eval_orderBool w (OLeastOne bs) =
(sum_bools (MAP (eval_orderBool w) bs) ≥ 1) ∧
eval_orderBool w (OMostOne bs) =
(sum_bools (MAP (eval_orderBool w) bs) ≤ 1) ∧
eval_orderBool w (OExactlyOne bs) =
(sum_bools (MAP (eval_orderBool w) bs) = 1) ∧
eval_orderBool w (OOrderAxiom xs) = eval_orderAxiom w xs
Termination
WF_REL_TAC ‘measure (λ (w,b). orderBool_size' b)’
>> rw[orderBool_size']
>> Induct_on ‘bs’
>> rw[orderBool_size']
>> gs[orderBool_size']
End
Definition unsat_orderBool_def:
unsat_orderBool b ⇔ ∀w. ¬eval_orderBool w b
End
(* ----------------------- Encoding ---------------------------------- *)
Definition encode_orderAxiom_def:
encode_orderAxiom [] = PFalse ∧
encode_orderAxiom [x] = PLit (INL x) ∧
encode_orderAxiom (x::y::xs) =
PAnd (PImpl (PLit (INL x)) (PLit (INL y))) (encode_orderAxiom (y::xs))
End
Definition orderBool_to_pseudoBool_def:
(orderBool_to_pseudoBool OTrue = PTrue) ∧
(orderBool_to_pseudoBool OFalse = PFalse) ∧
(orderBool_to_pseudoBool (OLit l) = PLit l) ∧
(orderBool_to_pseudoBool (ONot b) = PNot (orderBool_to_pseudoBool b)) ∧
(orderBool_to_pseudoBool (OAnd b1 b2) =
PAnd (orderBool_to_pseudoBool b1) (orderBool_to_pseudoBool b2)) ∧
(orderBool_to_pseudoBool (OOr b1 b2) =
POr (orderBool_to_pseudoBool b1) (orderBool_to_pseudoBool b2)) ∧
(orderBool_to_pseudoBool (OImpl b1 b2) =
PImpl (orderBool_to_pseudoBool b1) (orderBool_to_pseudoBool b2)) ∧
(orderBool_to_pseudoBool (OIff b1 b2) =
PIff (orderBool_to_pseudoBool b1) (orderBool_to_pseudoBool b2)) ∧
(orderBool_to_pseudoBool (OAll x b) =
PAll x (orderBool_to_pseudoBool b)) ∧
(orderBool_to_pseudoBool (OEx x b) =
PEx x (orderBool_to_pseudoBool b)) ∧
(orderBool_to_pseudoBool (OLeastOne bs) =
PLeastOne (MAP orderBool_to_pseudoBool bs)) ∧
(orderBool_to_pseudoBool (OMostOne bs) =
PMostOne (MAP orderBool_to_pseudoBool bs)) ∧
(orderBool_to_pseudoBool (OExactlyOne bs) =
PExactlyOne (MAP orderBool_to_pseudoBool bs)) ∧
(orderBool_to_pseudoBool (OOrderAxiom xs) = encode_orderAxiom xs)
Termination
WF_REL_TAC ‘measure orderBool_size'’
>> rw[orderBool_size']
>> Induct_on ‘bs’
>> rw[pseudoBool_size']
>> gs[orderBool_size']
End
Definition orderBool_to_cnf_def:
orderBool_to_cnf exp = pseudoBool_to_cnf (orderBool_to_pseudoBool exp)
End
(* ----------------------- Theorems ------------------------------------ *)
Theorem sum_bools_equal:
∀ bs w.
(∀ b. MEM b bs ⇒
∀ w. eval_orderBool w b ⇔
eval_pseudoBool w (orderBool_to_pseudoBool b)) ⇒
(sum_bools (MAP (eval_orderBool w) bs) =
sum_bools (MAP (eval_pseudoBool w) (MAP orderBool_to_pseudoBool bs)))
Proof
Induct >> rw[]
>> Cases_on ‘eval_pseudoBool w (orderBool_to_pseudoBool h)’
>> gs[sum_bools_def]
QED
Theorem orderBool_to_pseudoBool_preserves_sat:
∀ b w.
eval_orderBool w b =
eval_pseudoBool w (orderBool_to_pseudoBool b)
Proof
ho_match_mp_tac orderBool_to_pseudoBool_ind >> rw[]
>> TRY (rw[eval_orderBool_def, orderBool_to_pseudoBool_def,
eval_pseudoBool_def]
>> NO_TAC)
>> TRY (gs[eval_orderBool_def, orderBool_to_pseudoBool_def,
eval_pseudoBool_def]
>> qspecl_then [‘bs’, ‘w’] assume_tac sum_bools_equal
>> gs[]
>> metis_tac[]
>> NO_TAC)
>> rw[eval_orderBool_def, orderBool_to_pseudoBool_def]
>> Induct_on ‘xs’
>- rw[eval_orderAxiom_def, encode_orderAxiom_def, eval_pseudoBool_def]
>> gs[eval_orderAxiom_def]
>> Induct_on ‘xs’
>- gs[encode_orderAxiom_def, eval_pseudoBool_def, eval_literal_def]
>> rw[]
>> gs[eval_orderAxiom_def, encode_orderAxiom_def,
eval_pseudoBool_def, eval_literal_def]
>> Cases_on ‘w h'’ >> rw[]
>> Cases_on ‘w h’ >> rw[]
>> gs[]
QED
Definition orderBool_to_assignment_def:
orderBool_to_assignment w b =
pseudoBool_to_assignment w (orderBool_to_pseudoBool b)
End
Theorem orderBool_to_cnf_preserves_sat:
∀ b w.
eval_orderBool w b ⇔
eval_cnf
(orderBool_to_assignment w b)
(orderBool_to_cnf b)
Proof
gs[orderBool_to_pseudoBool_preserves_sat, orderBool_to_cnf_def,
orderBool_to_assignment_def, pseudoBool_to_cnf_preserves_sat]
QED
Theorem orderBool_to_cnf_imp_sat:
eval_cnf w (orderBool_to_cnf b) ⇒
eval_orderBool w b
Proof
rw [orderBool_to_cnf_def]
\\ imp_res_tac pseudoBool_to_cnf_imp_sat
\\ fs [orderBool_to_pseudoBool_preserves_sat]
QED
Theorem orderBool_to_cnf_preserves_unsat:
unsat_orderBool b ⇔ unsat_cnf (orderBool_to_cnf b)
Proof
fs [unsat_orderBool_def,orderBool_to_cnf_def, unsat_pseudoBool_def,
GSYM pseudoBool_to_cnf_preserves_unsat, orderBool_to_pseudoBool_preserves_sat]
QED
val _ = export_theory();