-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathinterpScript.sml
592 lines (565 loc) · 20.4 KB
/
interpScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
(*
Deriviation of a functional big-step semantics from the relational one.
*)
open preamble;
open fpSemPropsTheory astTheory semanticPrimitivesTheory bigStepTheory;
open determTheory bigClockTheory;
val _ = new_theory "interp";
val st = ``st:'ffi state``;
Theorem run_eval_spec_lem:
?run_eval run_eval_list run_eval_match.
(!env e ^st.
evaluate T env st e (run_eval env e st)) ∧
(!env es ^st.
evaluate_list T env st es (run_eval_list env es st)) ∧
(!env v pes err_v ^st.
evaluate_match T env st v pes err_v (run_eval_match env v pes err_v st))
Proof
simp [METIS_PROVE [] ``(?x y z. P x ∧ Q y ∧ R z) =
((?x. P x) ∧ (?y. Q y) ∧ (?z. R z))``, GSYM SKOLEM_THM] >>
strip_tac
>- metis_tac [big_clocked_total, pair_CASES] >>
strip_tac
>- (induct_on `es` >>
rw [Once evaluate_cases] >>
`?s' r. evaluate T env st h (s',r)` by metis_tac [big_clocked_total, pair_CASES] >>
metis_tac [pair_CASES, result_nchotomy]) >>
strip_tac
>-
(induct_on `pes` >>
rw [Once evaluate_cases] >>
`(?p e. h = (p,e))` by metis_tac [pair_CASES] >>
rw [] >>
rw [] >>
cases_on `pmatch env.c st.refs p v []` >>
rw []
>- metis_tac []
>- metis_tac []
>- (`?s' r. evaluate T (env with v := nsAppend (alist_to_ns a) env.v) st e (s',r)` by
metis_tac [big_clocked_total, pair_CASES] >>
metis_tac []))
QED
Theorem run_eval_spec =
new_specification ("run_eval", ["run_eval", "run_eval_list", "run_eval_match"],
run_eval_spec_lem);
Theorem evaluate_run_eval:
!env e r st.
evaluate T env st e r
=
(run_eval env e st = r)
Proof
metis_tac [big_exp_determ, run_eval_spec]
QED
Theorem evaluate_run_eval_list:
!env es r st.
evaluate_list T env st es r
=
(run_eval_list env es st = r)
Proof
metis_tac [big_exp_determ, run_eval_spec]
QED
Theorem evaluate_run_eval_match:
!env v pes r err_v st.
evaluate_match T env st v pes err_v r
=
(run_eval_match env v pes err_v st = r)
Proof
metis_tac [big_exp_determ, run_eval_spec]
QED
Type M = ``:'ffi state -> 'ffi state # ('a, v) result``
Definition result_bind_def:
(result_bind : (α,'ffi) M -> (α -> (β,'ffi) M) -> (β,'ffi) M) x f =
λs.
case x s of
(s, Rval v) => f v s
| (s, Rerr err) => (s, Rerr err)
End
Definition result_return_def:
(result_return (*: α -> (β, α, γ) M*)) x = λs. (s, Rval x)
End
Definition result_raise_def:
result_raise err = \s. (s, Rerr err)
End
Definition get_store_def:
(get_store : ('ffi state,'ffi) M) = (\s. (s, Rval s))
End
Definition set_store_def:
(set_store : 'ffi state -> (unit,'ffi) M) s = \s'. (s, Rval ())
End
Definition dec_clock_def:
(dec_clock : (unit,'ffi) M) =
(\s. if s.clock = 0 then (s, Rerr (Rabort Rtimeout_error))
else (s with clock := s.clock - 1, Rval ()))
End
val _ =
monadsyntax.declare_monad (
"result_state",
{ bind = ``result_bind``, ignorebind = NONE, unit = ``result_return``,
guard = NONE, choice = NONE, fail = NONE}
)
val _ = monadsyntax.temp_enable_monad "result_state";
Overload raise[local] = ``result_raise``
Theorem remove_lambda_pair:
((\ (x,y). f x y) z) = f (FST z) (SND z)
Proof
PairCases_on `z` >>
rw []
QED
Theorem fst_lem:
FST = (\ (x,y, z).x)
Proof
rw [FUN_EQ_THM] >>
PairCases_on `x` >>
fs []
QED
val _ = temp_delsimps["getOpClass_def"]
Theorem getOpClass_opClass:
(getOpClass op = FunApp ⇔ opClass op FunApp) ∧
(getOpClass op = Simple ⇔ opClass op Simple) ∧
(getOpClass op = Icing ⇔ opClass op Icing) ∧
(getOpClass op = Reals ⇔ opClass op Reals)
Proof
Cases_on ‘op’ >> gs[getOpClass_def, opClass_cases]
QED
Theorem evaluate_strict_fp_sticky:
(∀ ck env ^st e r.
evaluate ck env st e r ⇒
∀ st2 v.
r = (st2, v) ∧
st.fp_state.canOpt = Strict ⇒
st2.fp_state.canOpt = Strict) ∧
(∀ ck env ^st e r.
evaluate_list ck env st e r ⇒
∀ st2 vs.
r = (st2, vs) ∧
st.fp_state.canOpt = Strict ⇒
st2.fp_state.canOpt = Strict) ∧
(∀ ck env ^st v ps vr r.
evaluate_match ck env st v ps vr r ⇒
∀ st2 res.
r = (st2, res) ∧
st.fp_state.canOpt = Strict ⇒
st2.fp_state.canOpt = Strict)
Proof
ho_match_mp_tac evaluate_ind >> rw[evaluate_cases, shift_fp_opts_def]
QED
Theorem run_eval_def:
(!^st env l.
run_eval env (Lit l)
=
return (Litv l)) ∧
(!^st env e.
run_eval env (Raise e)
=
do v1 <- run_eval env e;
raise (Rraise v1)
od) ∧
(!env e1 pes.
run_eval env (Handle e1 pes)
=
(\st.
case run_eval env e1 ^st of
(st', Rerr (Rraise v)) =>
(if can_pmatch_all env.c st'.refs (MAP FST pes) v then
run_eval_match env v pes v st'
else raise (Rabort Rtype_error) st')
| (st', r) => (st',r))) ∧
(!env cn es.
run_eval env (Con cn es)
=
case cn of
NONE =>
do vs <- run_eval_list env (REVERSE es);
return (Conv NONE (REVERSE vs))
od
| SOME n =>
(case nsLookup env.c n of
| NONE => raise (Rabort Rtype_error)
| SOME (l,t) =>
if l = LENGTH es then
do vs <- run_eval_list env (REVERSE es);
return (Conv (SOME t) (REVERSE vs))
od
else
raise (Rabort Rtype_error))) ∧
(!env n.
run_eval env (Var n)
=
case nsLookup env.v n of
NONE => raise (Rabort Rtype_error)
| SOME v => return v) ∧
(!env n e.
run_eval env (Fun n e)
=
return (Closure env n e)) ∧
(!env op e1 e2.
run_eval env (App op es)
=
do vs <- run_eval_list env (REVERSE es);
^st <- get_store;
(case getOpClass op of
| FunApp =>
(case do_opapp (REVERSE vs) of
| NONE => raise (Rabort Rtype_error)
| SOME (env', e3) =>
do () <- dec_clock;
run_eval env' e3
od)
| Simple =>
(case do_app (st.refs,st.ffi) op (REVERSE vs) of
| NONE => raise (Rabort Rtype_error)
| SOME ((refs',ffi'),res) =>
do () <- set_store (st with <| refs := refs'; ffi := ffi' |>);
combin$C return res
od)
| Icing =>
(case do_app (st.refs,st.ffi) op (REVERSE vs) of
| NONE => raise (Rabort Rtype_error)
| SOME ((refs,ffi),r) => let
fp_opt =
(if (st.fp_state.canOpt = FPScope Opt) then
(case (do_fprw r (st.fp_state.opts 0) st.fp_state.rws) of
(* if it fails, just use the old value tree *)
| NONE => r
| SOME r_opt => r_opt)
(* If we cannot optimize, we should not allow matching on the
structure in the oracle *)
else r);
(stN:'ffi state) = (if st.fp_state.canOpt = FPScope Opt then shift_fp_opts st else st);
fp_res = if (isFpBool op) then
(case fp_opt of
Rval (FP_BoolTree fv) => Rval (Boolv (compress_bool fv))
| v => v)
else fp_opt
in
do () <- set_store (stN with <| refs := refs; ffi := ffi |>);
combin$C return fp_res
od)
| Reals =>
if (st.fp_state.real_sem) then
(case do_app (st.refs,st.ffi) op (REVERSE vs) of
| NONE => raise (Rabort Rtype_error)
| SOME ((refs,ffi),r) =>
combin$C return r)
else
do () <- set_store (shift_fp_opts st);
raise (Rabort Rtype_error)
od
| _ => raise (Rabort Rtype_error))
od) ∧
(!env lop e1 e2.
run_eval env (Log lop e1 e2)
=
do v1 <- run_eval env e1;
case do_log lop v1 e2 of
NONE => raise (Rabort Rtype_error)
| SOME (Val v) => return v
| SOME (Exp e') => run_eval env e'
od) ∧
(!env e1 e2 e3.
run_eval env (If e1 e2 e3)
=
do v1 <- run_eval env e1;
case do_if v1 e2 e3 of
NONE => raise (Rabort Rtype_error)
| SOME e' => run_eval env e'
od) ∧
(!env e pes.
run_eval env (Mat e pes)
=
do v <- run_eval env e;
^st <- get_store;
(if can_pmatch_all env.c st.refs (MAP FST pes) v then
run_eval_match env v pes bind_exn_v
else raise (Rabort Rtype_error))
od) ∧
(!env x e1 e2.
run_eval env (Let x e1 e2)
=
do v1 <- run_eval env e1;
run_eval (env with v := nsOptBind x v1 env.v) e2
od) ∧
(!env funs e.
run_eval env (Letrec funs e)
=
if ALL_DISTINCT (MAP FST funs) then
run_eval (env with v := build_rec_env funs env env.v) e
else
raise (Rabort Rtype_error)) ∧
(!env t e.
run_eval env (Tannot e t)
=
run_eval env e) ∧
(!env l e.
run_eval env (Lannot e l)
=
run_eval env e) ∧
(!env e.
run_eval env (FpOptimise sc e) =
(** We expand the monad here as we need to alter the state
even if evaluation fails to leave the optimizer in a consistent state **)
λ ^st.
let newSt = st with fp_state :=
(if (st.fp_state.canOpt = Strict) then st.fp_state
else st.fp_state with <| canOpt := FPScope sc|>)
in
case run_eval env e newSt of
(st', Rval v) =>
(st' with <| fp_state := st'.fp_state with <| canOpt := st.fp_state.canOpt |> |>,
Rval (HD (do_fpoptimise sc [v])))
| (st', Rerr e) =>
(st' with<| fp_state := st'.fp_state with <| canOpt := st.fp_state.canOpt |> |>,
Rerr e)) ∧
(!env.
run_eval_list env []
=
return []) ∧
(!env e es.
run_eval_list env (e::es)
=
do v <- run_eval env e;
vs <- run_eval_list env es;
return (v::vs)
od) ∧
(!env v err_v.
run_eval_match env v [] err_v
=
raise (Rraise err_v)) ∧
(!env v p e pes err_v.
run_eval_match env v ((p,e)::pes) err_v
=
do ^st <- get_store;
if ALL_DISTINCT (pat_bindings p []) then
case pmatch env.c st.refs p v [] of
Match_type_error => raise (Rabort Rtype_error)
| No_match => run_eval_match env v pes err_v
| Match env' => run_eval (env with v := nsAppend (alist_to_ns env') env.v) e
else
raise (Rabort Rtype_error)
od)
Proof
rw [GSYM evaluate_run_eval, FUN_EQ_THM, result_raise_def, result_return_def,
result_bind_def, get_store_def, set_store_def] >>
rw [Once evaluate_cases]
>- (every_case_tac >>
fs [GSYM evaluate_run_eval] >>
metis_tac [run_eval_spec])
>- (every_case_tac >>
metis_tac [run_eval_spec])
>- (every_case_tac >>
fs [do_con_check_def, build_conv_def] >>
metis_tac [run_eval_spec])
>- (every_case_tac >>
PairCases_on `q` >>
fs [] >>
rw [] >>
fs [GSYM evaluate_run_eval] >>
metis_tac [])
>- (rw [dec_clock_def] >>
Cases_on ‘getOpClass op = FunApp’ >> gs[]
>- (every_case_tac >>
rw [] >>
fs [remove_lambda_pair, shift_fp_opts_def, getOpClass_opClass] >>
rw [] >>
every_case_tac >>
fs [GSYM evaluate_run_eval_list] >>
rw [] >>
rw [] >> fs[state_transformerTheory.UNIT_DEF] >>
metis_tac [PAIR_EQ, pair_CASES, SND, FST, run_eval_spec]) >>
Cases_on ‘getOpClass op = Simple’ >> gs[]
>- (‘~ opClass op Icing’ by (Cases_on ‘op’ >> gs[getOpClass_def, opClass_cases]) >>
‘~ opClass op FunApp’ by (Cases_on ‘op’ >> gs[getOpClass_def, opClass_cases]) >>
‘~ opClass op Reals’ by (Cases_on ‘op’ >> gs[getOpClass_def, opClass_cases]) >>
gs[getOpClass_opClass] >>
every_case_tac >>
rw [] >>
fs [remove_lambda_pair, shift_fp_opts_def] >>
rw [] >>
every_case_tac >>
fs [GSYM evaluate_run_eval_list] >>
rw [] >>
rw [] >> fs[state_transformerTheory.UNIT_DEF] >>
metis_tac [PAIR_EQ, pair_CASES, SND, FST, run_eval_spec]) >>
Cases_on ‘getOpClass op = EvalOp’ >> gs[]
>- (‘~ opClass op Icing’ by (Cases_on ‘op’ >> gs[opClass_cases, getOpClass_def]) >>
‘~ opClass op FunApp’ by (Cases_on ‘op’ >> gs[getOpClass_def, opClass_cases]) >>
‘~ opClass op Reals’ by (Cases_on ‘op’ >> gs[getOpClass_def, opClass_cases]) >>
gs[] >> every_case_tac >> gs[remove_lambda_pair] >>
fs [GSYM evaluate_run_eval_list] >>
Cases_on ‘op’ >> gs[opClass_cases, getOpClass_def] >> gs[do_app_def]
>> disj1_tac >> first_x_assum $ irule_at Any >> every_case_tac >> gs[]) >>
Cases_on ‘getOpClass op = Reals’ >> gs[]
>- (‘~ opClass op Icing’ by (Cases_on ‘op’ >> gs[opClass_cases, getOpClass_def]) >>
‘~ opClass op FunApp’ by (Cases_on ‘op’ >> gs[opClass_cases, getOpClass_def]) >>
‘opClass op Reals’ by (Cases_on ‘op’ >> gs[opClass_cases, getOpClass_def]) >>
gs[] >> every_case_tac >> gs[remove_lambda_pair] >>
fs [GSYM evaluate_run_eval_list]
>- (ntac 3 disj2_tac >> disj1_tac >> first_x_assum $ irule_at Any >> gs[])
>- (disj2_tac >> disj1_tac >> first_x_assum $ irule_at Any >>
fs[state_transformerTheory.UNIT_DEF, compress_if_bool_def] >>
first_x_assum $ mp_then Any assume_tac (INST_TYPE [beta |-> “:'ffi”, alpha |->“:'ffi”] realOp_determ) >>
Cases_on ‘q'’ >> gs[] >>
res_tac >>
first_x_assum $ qspec_then ‘q.ffi’ assume_tac >> gs[] >>
rveq >> gs[state_component_equality])
>> ntac 2 disj2_tac >> disj1_tac
>> first_x_assum $ irule_at Any>> rw[]) >>
‘getOpClass op = Icing’ by (Cases_on ‘op’ >> gs[opClass_cases, getOpClass_def]) >>
‘~ opClass op FunApp’ by (Cases_on ‘op’ >> gs[opClass_cases, getOpClass_def]) >>
‘~ opClass op Simple’ by (Cases_on ‘op’ >> gs[opClass_cases, getOpClass_def]) >>
‘~ opClass op Reals’ by (Cases_on ‘op’ >> gs[opClass_cases, getOpClass_def]) >>
gs[] >>
ntac 2 TOP_CASE_TAC >> gs[GSYM evaluate_run_eval_list] >>
TOP_CASE_TAC >> gs[]
>- metis_tac [PAIR_EQ, pair_CASES, SND, FST, run_eval_spec] >>
ntac 2 TOP_CASE_TAC >> gs[getOpClass_opClass] >>
rename1 ‘s2.fp_state.canOpt = FPScope Opt’ >>
reverse $ Cases_on ‘s2.fp_state.canOpt = FPScope Opt’ >> gs[]
>- ( fs[state_transformerTheory.UNIT_DEF, compress_if_bool_def] >>
metis_tac [PAIR_EQ, pair_CASES, SND, FST, run_eval_spec]) >>
disj2_tac >>
Cases_on ‘do_fprw r (s2.fp_state.opts 0) s2.fp_state.rws’ >> gs[] >>
fs[state_transformerTheory.UNIT_DEF, compress_if_bool_def] >>
metis_tac [PAIR_EQ, pair_CASES, SND, FST, run_eval_spec])
>- (every_case_tac >>
rw [] >>
fs [remove_lambda_pair, GSYM evaluate_run_eval] >>
metis_tac [PAIR_EQ, pair_CASES, SND, FST, run_eval_spec])
>- (every_case_tac >>
rw [] >>
fs [remove_lambda_pair, GSYM evaluate_run_eval] >>
metis_tac [PAIR_EQ, pair_CASES, SND, FST, run_eval_spec])
>- (every_case_tac >>
rw [] >>
fs [remove_lambda_pair, GSYM evaluate_run_eval] >>
metis_tac [PAIR_EQ, pair_CASES, SND, FST, run_eval_spec])
>- (every_case_tac >>
rw [] >>
fs [remove_lambda_pair, GSYM evaluate_run_eval] >>
metis_tac [PAIR_EQ, pair_CASES, SND, FST, run_eval_spec])
>- metis_tac [fst_lem, run_eval_spec, pair_CASES]
>- metis_tac [fst_lem, run_eval_spec]
>- metis_tac [fst_lem, run_eval_spec]
>- metis_tac [fst_lem, run_eval_spec]
>- (every_case_tac >> rw[] >> gs [GSYM evaluate_run_eval] >>
‘st with fp_state := st.fp_state = st’ by gs[state_component_equality] >>
gs[] >>
imp_res_tac evaluate_strict_fp_sticky >> gs[] >>
first_x_assum $ irule_at Any >> gs[state_component_equality, fpState_component_equality])
>- (every_case_tac >> rw[] >> gs [GSYM evaluate_run_eval] >>
‘st with fp_state := st.fp_state = st’ by gs[state_component_equality] >>
gs[] >>
first_x_assum $ irule_at Any >> gs[state_component_equality, fpState_component_equality])
>- (rw [GSYM evaluate_run_eval_list] >>
rw [Once evaluate_cases])
>- (every_case_tac >>
rw [] >>
fs [GSYM evaluate_run_eval_list, GSYM evaluate_run_eval] >>
rw [Once evaluate_cases] >>
metis_tac [])
>- (rw [GSYM evaluate_run_eval_match] >>
rw [Once evaluate_cases])
>- (every_case_tac >>
rw [] >>
fs [GSYM evaluate_run_eval_match, GSYM evaluate_run_eval] >>
rw [Once evaluate_cases] >>
fs [] >>
fs [] >>
rw [] >>
metis_tac [fst_lem, run_eval_spec, pair_CASES, FST])
>- (every_case_tac >>
rw [] >>
fs [GSYM evaluate_run_eval_match, GSYM evaluate_run_eval] >>
rw [Once evaluate_cases])
QED
Definition run_eval_dec_def:
(run_eval_dec env ^st (Dlet _ p e) =
if ALL_DISTINCT (pat_bindings p []) ∧
every_exp (one_con_check env.c) e then
case run_eval env e st of
| (st', Rval v) =>
(case pmatch env.c st'.refs p v [] of
| Match env' => (st', Rval <| v := alist_to_ns env'; c := nsEmpty |>)
| No_match => (st', Rerr (Rraise bind_exn_v))
| Match_type_error => (st', Rerr (Rabort Rtype_error)))
| (st', Rerr e) => (st', Rerr e)
else
(st, Rerr (Rabort Rtype_error))) ∧
(run_eval_dec env ^st (Dletrec _ funs) =
if ALL_DISTINCT (MAP FST funs) ∧
EVERY (λ(_,_,e). every_exp (one_con_check env.c) e) funs then
(st, Rval <| v := build_rec_env funs env nsEmpty; c := nsEmpty |>)
else
(st, Rerr (Rabort Rtype_error))) ∧
(run_eval_dec env ^st (Dtype _ tds) =
if EVERY check_dup_ctors tds then
(st with next_type_stamp := st.next_type_stamp + LENGTH tds,
Rval <| v := nsEmpty; c := build_tdefs st.next_type_stamp tds |>)
else
(st, Rerr (Rabort Rtype_error))) ∧
(run_eval_dec env ^st (Denv n) =
case declare_env st.eval_state env of
| NONE => (st, Rerr (Rabort Rtype_error))
| SOME (x, es') => (( st with<| eval_state := es' |>),
Rval <| v := (nsSing n x); c := nsEmpty |>)) ∧
(run_eval_dec env ^st (Dtabbrev _ tvs tn t) =
(st, Rval <| v := nsEmpty; c := nsEmpty |>)) ∧
(run_eval_dec env ^st (Dexn _ cn ts) =
(st with next_exn_stamp := st.next_exn_stamp + 1,
Rval <| v := nsEmpty; c := nsSing cn (LENGTH ts, ExnStamp st.next_exn_stamp) |>)) ∧
(run_eval_dec env st (Dmod mn ds) =
case run_eval_decs env st ds of
(st', Rval env') =>
(st', Rval <| v := nsLift mn env'.v; c := nsLift mn env'.c |>)
| (st', Rerr err) =>
(st', Rerr err)) ∧
(run_eval_dec env st (Dlocal lds ds) =
case run_eval_decs env st lds of
(st', Rval env') =>
(run_eval_decs (extend_dec_env env' env) st' ds)
| (st', Rerr err) => (st', Rerr err)) ∧
(run_eval_decs env st [] = (st, Rval <| v := nsEmpty; c := nsEmpty |>)) ∧
(run_eval_decs env st (d::ds) =
case run_eval_dec env st d of
(st', Rval env') =>
(case run_eval_decs (extend_dec_env env' env) st' ds of
(st'', r) =>
(st'', combine_dec_result env' r))
| (st',Rerr err) => (st',Rerr err))
End
Theorem run_eval_decs_spec:
(!d (st:'a state) env st' r.
(run_eval_dec env st d = (st', r)) ⇒
evaluate_dec T env st d (st', r)) ∧
(!ds env (st:'a state) st' r.
(run_eval_decs env st ds = (st',r)) ⇒
evaluate_decs T env st ds (st',r))
Proof
ho_match_mp_tac astTheory.dec_induction >>
rw [] >>
simp [Once evaluate_dec_cases] >>
fs [run_eval_dec_def] >>
every_case_tac >>
rw [] >>
fs [GSYM evaluate_run_eval, fst_lem, CaseEq"bool"] >>
metis_tac []
QED
Theorem evaluate_dec_run_eval_dec:
∀env d r st. evaluate_dec T env st d r ⇔ run_eval_dec env st d = r
Proof
rw[] >> reverse eq_tac >> rw[] >>
Cases_on `run_eval_dec env st d`
>- metis_tac[run_eval_decs_spec] >>
drule $ cj 1 run_eval_decs_spec >> rw[] >>
metis_tac[decs_determ]
QED
Theorem evaluate_decs_run_eval_decs:
∀env ds r st. evaluate_decs T env st ds r ⇔ run_eval_decs env st ds = r
Proof
rw[] >> reverse eq_tac >> rw[] >>
Cases_on `run_eval_decs env st ds`
>- metis_tac[run_eval_decs_spec] >>
drule $ cj 2 run_eval_decs_spec >> rw[] >>
metis_tac[decs_determ]
QED
val _ = export_theory ();