-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathitree_semanticsPropsScript.sml
789 lines (698 loc) · 25 KB
/
itree_semanticsPropsScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
(*
Properties about the itree- and FFI state-based CakeML semantics
*)
open HolKernel Parse boolLib bossLib BasicProvers dep_rewrite;
open optionTheory relationTheory pairTheory listTheory
arithmeticTheory llistTheory pred_setTheory;
open namespaceTheory astTheory ffiTheory semanticPrimitivesTheory
evaluatePropsTheory smallStepTheory smallStepPropsTheory lprefix_lubTheory;
open itreeTheory itree_semanticsTheory;
val _ = new_theory "itree_semanticsProps";
(******************** Definitions ********************)
(***** Step-counting version of smallStep RTC definitions *****)
Definition step_n_cml_def:
step_n_cml 0 e = e ∧
step_n_cml (SUC n) (Estep st) = step_n_cml n (e_step st) ∧
step_n_cml _ e = e
End
Definition is_halt_cml_def:
is_halt_cml (Estep (env, st_ffi, fp, Val v, [])) = T ∧
is_halt_cml (Estep (env, st_ffi, fp, Exn v, [])) = T ∧
is_halt_cml (Eabort a) = T ∧
is_halt_cml _ = F
End
Definition step_to_halt_cml_def:
step_to_halt_cml e =
case some n. is_halt_cml (step_n_cml n e) of
| NONE => NONE
| SOME n => SOME $ step_n_cml n e
End
Definition step_n_cml_def[allow_rebind]:
step_n_cml env 0 d = d ∧
step_n_cml env (SUC n) (Dstep st) = step_n_cml env n (decl_step env st) ∧
step_n_cml env _ d = d
End
Definition is_halt_cml_def[allow_rebind]:
is_halt_cml (Dstep step) = F ∧
is_halt_cml (Dabort err) = T ∧
is_halt_cml Ddone = T ∧
is_halt_cml (Draise v) = T
End
Definition dstep_to_halt_cml_def:
dstep_to_halt_cml env e =
case some n. is_halt_cml (step_n_cml env n e) of
| NONE => NONE
| SOME n => SOME $ step_n_cml env n e
End
(***** Relating smallStep and itree-based semantics for expressions *****)
Inductive result_rel:
result_rel (Rval v) (Rval v) ∧
result_rel (Rraise v) (Rerr $ Rraise v)
End
Inductive ctxt_frame_rel:
ctxt_frame_rel Craise (Craise ()) ∧
ctxt_frame_rel (Chandle pes) (Chandle () pes) ∧
ctxt_frame_rel (Capp op vs es) (Capp op vs () es) ∧
ctxt_frame_rel (Clog lop e) (Clog lop () e) ∧
ctxt_frame_rel (Cif e1 e2) (Cif () e1 e2) ∧
ctxt_frame_rel (Cmat_check pes v) (Cmat_check () pes v) ∧
ctxt_frame_rel (Cmat pes v) (Cmat () pes v) ∧
ctxt_frame_rel (Clet vopt e) (Clet vopt () e) ∧
ctxt_frame_rel (Ccon idopt vs es) (Ccon idopt vs () es) ∧
ctxt_frame_rel (Ctannot ty) (Ctannot () ty) ∧
ctxt_frame_rel (Clannot ls) (Clannot () ls) ∧
ctxt_frame_rel (Coptimise oldSc sc) (Coptimise oldSc sc ())
End
Definition ctxt_rel_def:
ctxt_rel cs1 cs2 =
LIST_REL (λ(c1,env1) (c2,env2). ctxt_frame_rel c1 c2 ∧ env1 = env2) cs1 cs2
End
Inductive step_result_rel:
(ctxt_rel cs1 cs2 ⇒
step_result_rel (Estep (env, st, fp, ev, cs1)) (Estep (env, (st, ffi), fp, ev, cs2))) ∧
step_result_rel Edone Estuck ∧
step_result_rel (Etype_error fp) (Eabort (fp, Rtype_error))
End
(***** Relating smallStep and itree-based semantics for declarations *****)
Definition dstate_rel_def:
dstate_rel (dst : dstate) (st : 'a state) ⇔
dst.refs = st.refs ∧
dst.next_type_stamp = st.next_type_stamp ∧
dst.next_exn_stamp = st.next_exn_stamp ∧
dst.eval_state = st.eval_state ∧
dst.fp_state = st.fp_state
End
Inductive deval_rel:
deval_rel (itree_semantics$Decl d) (smallStep$Decl d) ∧
deval_rel (Env e) (Env e) ∧
(ctxt_rel cs scs ⇒
deval_rel (ExpVal env ev cs l p) (ExpVal env ev scs l p))
End
Inductive dstep_result_rel:
(dstate_rel dst st ∧ deval_rel dev1 dev2 ⇒
dstep_result_rel
(itree_semantics$Dstep dst dev1 dcs) (smallStep$Dstep (st, dev2, dcs))) ∧
dstep_result_rel Ddone Ddone ∧
dstep_result_rel (Draise v) (Draise v) ∧
dstep_result_rel (Dtype_error fp) (Dabort (fp, Rtype_error))
End
(***** Play out a particular trace prefix from a given itree, modelling the
environment as an FFI oracle with associated FFI state (as in CakeML) *****)
Definition trace_prefix_def:
trace_prefix 0 (oracle, ffi_st) itree = ([], NONE) ∧
trace_prefix (SUC n) (oracle, ffi_st) (Ret r) = ([], SOME r) ∧
trace_prefix (SUC n) (oracle, ffi_st) Div = ([], NONE) ∧
trace_prefix (SUC n) (oracle, ffi_st) (Vis (s, conf, ws) f) =
case oracle s ffi_st conf ws of
| Oracle_return ffi_st' ws' =>
let (io, res) = trace_prefix n (oracle, ffi_st') (f $ INR ws') in
if LENGTH ws ≠ LENGTH ws' then (io, res)
else (IO_event s conf (ZIP (ws,ws'))::io, res)
| Oracle_final outcome => trace_prefix n (oracle, ffi_st) (f $ INL outcome)
End
(***** Misc definitions *****)
Definition is_Effi_def:
is_Effi (Effi (ExtCall _) _ _ _ _ _ _) = T ∧
is_Effi _ = F
End
Definition is_Dffi_def:
is_Dffi (Dffi _ (ExtCall _,_) _ _ _) = T ∧
is_Dffi _ = F
End
Definition get_ffi_def:
get_ffi (Estep (env, (st, ffi), fp, ev, cs)) = SOME ffi ∧
get_ffi _ = NONE
End
Definition dget_ffi_def:
dget_ffi (Dstep (st, dev, dcs)) = SOME st.ffi ∧
dget_ffi _ = NONE
End
(******************** Useful simplifications ********************)
(* Deliberately no `application_def` here *)
val smallstep_ss = simpLib.named_rewrites "smallstep_ss" [
smallStepTheory.continue_def,
smallStepTheory.return_def,
smallStepTheory.push_def,
smallStepTheory.e_step_def
];
val dsmallstep_ss = simpLib.named_rewrites "dsmallstep_ss" [
smallStepTheory.collapse_env_def,
smallStepTheory.decl_continue_def,
smallStepTheory.decl_step_def
];
val itree_ss = simpLib.named_rewrites "itree_ss" [
itree_semanticsTheory.exn_continue_def,
itree_semanticsTheory.continue_def,
itree_semanticsTheory.return_def,
itree_semanticsTheory.push_def,
itree_semanticsTheory.estep_def,
get_ffi_def
];
val ditree_ss = simpLib.named_rewrites "ditree_ss" [
itree_semanticsTheory.dcontinue_def,
itree_semanticsTheory.dreturn_def,
itree_semanticsTheory.dpush_def,
itree_semanticsTheory.dstep_def,
dget_ffi_def
];
Theorem step_n_same[simp]:
(∀env n. step_n env n Ddone = Ddone) ∧
(∀env n fp. step_n env n (Dtype_error fp) = (Dtype_error fp)) ∧
(∀env n st ev l p dcs. step_n env n (Dffi st ev l p dcs) = Dffi st ev l p dcs) ∧
(∀env n v. step_n env n (Draise v) = Draise v) ∧
(∀env n. step_n_cml env n Ddone = Ddone) ∧
(∀env n err. step_n_cml env n (Dabort err) = (Dabort err)) ∧
(∀env n v. step_n_cml env n (Draise v) = Draise v)
Proof
rpt conj_tac >> strip_tac >>
Cases >> rw[step_n_def, step_n_cml_def]
QED
Theorem is_Effi_def[allow_rebind]:
is_Effi e ⇔ ∃ s ws1 ws2 n env st cs. e = Effi (ExtCall s) ws1 ws2 n env st cs
Proof
Cases_on `e` >> simp[is_Effi_def] >> rename [‘Effi f’] >>
Cases_on ‘f’ >> simp[is_Effi_def]
QED
Theorem is_Dffi_def[allow_rebind]:
is_Dffi d ⇔ ∃st s ev0 l p dcs. d = Dffi st (ExtCall s, ev0) l p dcs
Proof
Cases_on `d` >> simp[is_Dffi_def] >> rename [‘Dffi d tup’] >>
PairCases_on ‘tup’ >> Cases_on ‘tup0’ >> simp[is_Dffi_def]
QED
Theorem step_result_rel_not_Effi:
∀e1 e2. step_result_rel e1 e2 ⇒ ¬ is_Effi e1
Proof
rw[step_result_rel_cases, is_Effi_def]
QED
Theorem dstep_result_rel_not_Dffi:
∀a b. dstep_result_rel a b ⇒ ¬ is_Dffi a
Proof
rw[dstep_result_rel_cases, is_Dffi_def]
QED
(******************** Relate smallStep RTC and step-counting ********************)
(***** Lemmas *****)
Theorem cml_application_thm = smallStepPropsTheory.application_thm;
Theorem application_not_Estuck:
application op env st_ffi fp vs cs ≠ Estuck
Proof
rw[cml_application_thm] >>
EVERY_CASE_TAC >> gvs[SF smallstep_ss]
QED
Theorem e_step_to_Estuck:
e_step (env, st_ffi, fp, ev, cs) = Estuck ⇔
(∃v. ev = Val v ∧ cs = []) ∨
(∃v env'. ev = Exn v ∧ cs = [])
Proof
reverse $ eq_tac
>- (rw[] >> gvs[SF smallstep_ss]) >>
gvs[e_step_def] >> TOP_CASE_TAC >> gvs[]
>- (every_case_tac >> gvs[SF smallstep_ss, application_not_Estuck]) >>
gvs[AllCaseEqs(), SF smallstep_ss, application_not_Estuck]
QED
Theorem step_n_cml_eq_Dstep:
∀env n e st.
step_n_cml env n e = Dstep st
⇒ ∀m. m < n ⇒ ∃st'. step_n_cml env m e = Dstep st'
Proof
strip_tac >> Induct >> rw[step_n_cml_def] >>
Cases_on `e` >> gvs[step_n_cml_def] >>
Cases_on `m` >> gvs[step_n_cml_def]
QED
Theorem step_n_cml_alt_def:
step_n_cml env 0 e = e ∧
step_n_cml env (SUC n) e = (
case step_n_cml env n e of
| Dstep st => decl_step env st
| e => e)
Proof
rw[step_n_cml_def] >>
qid_spec_tac `e` >> qid_spec_tac `n` >>
Induct >> Cases >> rewrite_tac[step_n_cml_def] >> simp[]
QED
Theorem step_n_cml_add:
∀env a b e. step_n_cml env (a + b) e = step_n_cml env a (step_n_cml env b e)
Proof
strip_tac >> Induct >> rw[step_n_cml_def] >>
simp[ADD_CLAUSES, step_n_cml_alt_def]
QED
Theorem is_halt_cml_step_n_cml_eq:
∀n m e env.
is_halt_cml (step_n_cml env n e) ∧
is_halt_cml (step_n_cml env m e)
⇒ step_n_cml env n e = step_n_cml env m e
Proof
rw[] >> wlog_tac `n < m` [`n`,`m`]
>- (Cases_on `n = m` >> gvs[]) >>
imp_res_tac LESS_STRONG_ADD >> gvs[] >>
gvs[step_n_cml_add |> ONCE_REWRITE_RULE[ADD_COMM]] >>
Cases_on `step_n_cml env n e` >> gvs[is_halt_cml_def]
QED
(***** Results *****)
Theorem decl_step_reln_eq_step_n_cml:
(decl_step_reln env)^* st1 st2 ⇔
∃n. step_n_cml env n (Dstep st1) = Dstep st2
Proof
reverse $ eq_tac >> rw[] >> pop_assum mp_tac
>- (
map_every qid_spec_tac [`st2`,`st1`,`n`] >>
Induct >> rw[step_n_cml_alt_def] >>
every_case_tac >> gvs[] >>
rw[Once relationTheory.RTC_CASES2] >> disj2_tac >>
last_x_assum $ irule_at Any >> gvs[decl_step_reln_def]
)
>- (
Induct_on `(decl_step_reln env)^*` >> rw[]
>- (qexists_tac `0` >> gvs[step_n_cml_def])
>- (qexists_tac `SUC n` >> gvs[step_n_cml_def, decl_step_reln_def])
)
QED
Theorem small_eval_dec_eq_step_n_cml:
(small_eval_dec env dst (st, Rval e) ⇔
∃n. step_n_cml env n (Dstep dst) = Dstep (st, Env e, [])) ∧
(small_eval_dec env dst (st, Rerr (Rraise v)) ⇔
∃n dev dcs fp.
step_n_cml env n (Dstep dst) = Dstep (st with fp_state := fp, dev, dcs) ∧
decl_step env (st with fp_state := fp, dev, dcs) = Draise (st.fp_state, v)) ∧
(small_eval_dec env dst (st, Rerr (Rabort err)) ⇔
∃n dev dcs fp.
step_n_cml env n (Dstep dst) = Dstep (st with fp_state:= fp, dev, dcs) ∧
decl_step env (st with fp_state := fp, dev, dcs) = Dabort (st.fp_state, err))
Proof
rw[small_eval_dec_def, decl_step_reln_eq_step_n_cml] >>
eq_tac >> rw[PULL_EXISTS] >> rpt $ goal_assum drule
QED
Theorem dec_diverges_eq_step_to_halt_cml:
small_decl_diverges env dst ⇔ dstep_to_halt_cml env (Dstep dst) = NONE
Proof
rw[dstep_to_halt_cml_def, small_decl_diverges_def,
decl_step_reln_eq_step_n_cml, PULL_EXISTS] >>
eq_tac >> rw[] >> gvs[e_step_reln_def]
>- (
DEEP_INTRO_TAC some_intro >> rw[] >>
Induct_on `x` >> rw[] >> gvs[step_n_cml_alt_def, is_halt_cml_def] >>
CASE_TAC >> gvs[] >>
last_x_assum drule >> strip_tac >> gvs[decl_step_reln_def, is_halt_cml_def]
)
>- (
last_x_assum mp_tac >> DEEP_INTRO_TAC some_intro >> rw[] >>
first_x_assum $ qspec_then `SUC n` assume_tac >>
gvs[step_n_cml_alt_def] >>
Cases_on `decl_step env b` >> gvs[is_halt_cml_def, decl_step_reln_def]
)
QED
(******************** Lemmas ********************)
(***** trace_prefix *****)
Theorem trace_prefix_prefix:
∀n m oracle ffi t io res io' res'. n ≤ m ∧
trace_prefix n (oracle,ffi) t = (io,res) ∧
trace_prefix m (oracle,ffi) t = (io',res')
⇒ io ≼ io'
Proof
Induct >> rw[] >> gvs[trace_prefix_def] >>
Cases_on `m` >> gvs[] >> rename1 `_ ≤ m` >>
first_x_assum drule >> rw[] >>
Cases_on `t` >> gvs[trace_prefix_def] >>
PairCases_on `a` >> gvs[trace_prefix_def] >>
every_case_tac >> gvs[] >> rpt (pairarg_tac >> gvs[]) >> res_tac
QED
Theorem lprefix_chain_trace_prefix:
lprefix_chain
{ fromList (a ++ io) | ∃n res. trace_prefix n (oracle,ffi) t = (io,res) }
Proof
rw[lprefix_chain_def] >> simp[LPREFIX_fromList, from_toList] >>
Cases_on `n ≤ n'` >> imp_res_tac trace_prefix_prefix >> gvs[]
QED
Theorem trace_prefix_Div[simp]:
∀n. trace_prefix n (oracle,ffi_st) Div = ([],NONE)
Proof
Cases >> rw[trace_prefix_def]
QED
Theorem trace_prefix_SOME_mono:
∀m n oracle ffi_st t io res.
trace_prefix n (oracle,ffi_st) t = (io, SOME res) ∧ n ≤ m
⇒ trace_prefix m (oracle,ffi_st) t = (io, SOME res)
Proof
Induct >> rw[] >> gvs[trace_prefix_def] >>
Cases_on `n` >> gvs[trace_prefix_def] >>
Cases_on `t` >> gvs[trace_prefix_def] >>
PairCases_on `a` >> gvs[trace_prefix_def] >> reverse CASE_TAC >> gvs[]
>- (first_x_assum drule_all >> simp[]) >>
CASE_TAC >> gvs[] >> rpt (pairarg_tac >> gvs[]) >>
first_x_assum drule_all >> simp[]
QED
Theorem trace_prefix_NONE_mono:
∀m n oracle ffi_st t io res.
trace_prefix m (oracle,ffi_st) t = (io, NONE) ∧ n ≤ m
⇒ ∃io'. isPREFIX io' io ∧ trace_prefix n (oracle,ffi_st) t = (io', NONE)
Proof
Induct >> rw[] >> gvs[trace_prefix_def] >>
Cases_on `n` >> gvs[trace_prefix_def] >>
Cases_on `t` >> gvs[trace_prefix_def] >>
PairCases_on `a` >> gvs[trace_prefix_def] >> CASE_TAC >> gvs[] >>
CASE_TAC >> gvs[] >> rpt (pairarg_tac >> gvs[]) >>
first_x_assum drule_all >> rw[]
QED
(***** lprefix_lub *****)
Theorem lprefix_lub_SING[simp]:
lprefix_lub { a } l ⇔ l = a
Proof
eq_tac >> rw[lprefix_lub_def] >>
first_x_assum $ qspec_then `a` assume_tac >> gvs[LPREFIX_ANTISYM]
QED
Theorem lprefix_lub_LNIL[simp]:
lprefix_lub {fromList io | io = [] : io_event list} l = (l = [| |]) ∧
lprefix_lub ll [| |] = (∀l. l ∈ ll ⇒ l = [| |])
Proof
rw[EXTENSION, lprefix_lub_def] >> eq_tac >> rw[] >>
pop_assum $ qspec_then `[||]` mp_tac >> simp[]
QED
Theorem lprefix_lub_LCONS:
lprefix_lub ls (h:::t) ⇒
∀l. l ∈ ls ⇒ LHD l = NONE ∨ LHD l = SOME h
Proof
rw[lprefix_lub_def] >> Cases_on `l` >> gvs[] >>
last_x_assum drule >> gvs[LPREFIX_LCONS]
QED
Theorem lprefix_lub_LTL:
lprefix_lub ls (h:::t) ∧
ltls = { ltl | ∃l. l ∈ ls ∧ LTL l = SOME ltl }
⇒ lprefix_lub ltls t
Proof
rw[lprefix_lub_def] >> gvs[LPREFIX_LCONS, PULL_EXISTS]
>- (first_x_assum drule >> rw[] >> gvs[]) >>
qpat_x_assum `∀ub. (∀ll. _) ⇒ _` $ qspec_then `h:::ub` mp_tac >>
simp[] >> disch_then irule >> rw[] >>
last_x_assum drule >> rw[] >> gvs[LPREFIX_LCONS] >>
last_x_assum irule >> goal_assum $ drule_at Any >> simp[]
QED
(***** smallStep FFI-state lemmas *****)
Theorem io_events_mono_step_n_cml:
∀env n dst1 dst2.
step_n_cml env n (Dstep dst1) = Dstep dst2
⇒ io_events_mono (FST dst1).ffi (FST dst2).ffi
Proof
strip_tac >> Induct >> rw[step_n_cml_alt_def] >>
irule io_events_mono_trans >>
last_x_assum $ irule_at Any >>
qspecl_then [`env`,`SUC n`,`Dstep dst1`,`dst2`] mp_tac step_n_cml_eq_Dstep >>
gvs[step_n_cml_alt_def] >>
disch_then $ qspec_then `n` mp_tac >> gvs[] >> strip_tac >> gvs[] >>
irule io_events_mono_decl_step >> simp[] >> goal_assum drule
QED
Theorem step_n_cml_preserved_FFI:
∀n e e' env.
step_n_cml env n e = Dstep e' ∧ dget_ffi (Dstep e') = dget_ffi e
⇒ ∀m. m < n ⇒ dget_ffi (step_n_cml env m e) = dget_ffi (Dstep e')
Proof
rw[] >> imp_res_tac LESS_STRONG_ADD >>
gvs[step_n_cml_add |> ONCE_REWRITE_RULE[ADD_COMM]] >> rename1 `SUC n` >>
Cases_on `step_n_cml env m e` >> gvs[] >>
PairCases_on `p` >> rename1 `(dst1,dev1,dcs1)` >>
Cases_on `e` >> gvs[] >>
PairCases_on `p` >> rename1 `_ = dget_ffi $ _ (dst,dev,dcs)` >>
PairCases_on `e'` >>
rename1 `step_n_cml _ (SUC _) _ = Dstep (dst2,dev2,dcs2)` >>
imp_res_tac io_events_mono_step_n_cml >> gvs[dget_ffi_def] >>
imp_res_tac io_events_mono_antisym >> gvs[]
QED
(***** itree-based lemmas *****)
Theorem step_n_alt_def:
step_n env 0 e = e ∧
step_n env (SUC n) e = (
case step_n env n e of
| Dstep dst dev dcs => dstep env dst dev dcs
| e => e)
Proof
rw[step_n_def] >>
qid_spec_tac `e` >> qid_spec_tac `n` >>
Induct >> Cases >> rewrite_tac[step_n_def] >> simp[]
QED
Theorem step_n_add:
∀a b. step_n env (a + b) e = step_n env a (step_n env b e)
Proof
Induct >> rw[step_n_def] >>
simp[ADD_CLAUSES, step_n_alt_def]
QED
Theorem is_halt_step_n_eq:
∀n m env e.
is_halt (step_n env n e) ∧
is_halt (step_n env m e)
⇒ step_n env n e = step_n env m e
Proof
rw[] >> wlog_tac `n < m` [`n`,`m`]
>- (Cases_on `n = m` >> gvs[]) >>
imp_res_tac LESS_STRONG_ADD >> gvs[] >>
gvs[step_n_add |> ONCE_REWRITE_RULE[ADD_COMM]] >>
Cases_on `step_n env n e` >> gvs[is_halt_def, step_n_def]
QED
Theorem application_thm:
∀op env s vs c.
application op env s fp vs c =
if getOpClass op = FunApp then
case do_opapp vs of
| NONE => Etype_error (fix_fp_state c fp)
| SOME (env,e) => Estep (env,s,fp,Exp e,c)
else if ∃n. op = FFI n then (
case op of FFI n => (
case vs of
[Litv (StrLit conf); Loc b lnum] => (
case store_lookup lnum s of
SOME (W8array ws) =>
if n = "" then Estep (env, s, fp, Val $ Conv NONE [], c)
else Effi (ExtCall n)
(MAP (λc. n2w $ ORD c) (EXPLODE conf))
ws lnum env s c
| _ => Etype_error (fix_fp_state c fp))
| _ => Etype_error (fix_fp_state c fp))
| _ => ARB)
else (case getOpClass op of
| Icing =>
(case do_app s op vs of
NONE => Etype_error (fix_fp_state c fp)
| SOME (s',r) =>
let fp_opt =
(if fp.canOpt = FPScope Opt then
case (do_fprw r (fp.opts 0) fp.rws) of
(* if it fails, just use the old value tree *)
NONE => r
| SOME r_opt => r_opt
else r)
in
let fpN = (if fp.canOpt = FPScope Opt then shift_fp_state fp else fp) in
let fp_res =
(if (isFpBool op)
then (case fp_opt of
Rval (FP_BoolTree fv) => Rval (Boolv (compress_bool fv))
| v => v
)
else fp_opt)
in
(case fp_res of
Rraise v => Estep (env,s', fpN, Exn v, c)
| Rval v => return env s' fpN v c))
| Reals =>
if fp.real_sem then
(case do_app s op vs of
SOME (s', Rraise v) => Estep (env, s', fp, Exn v, c)
| SOME (s', Rval v) => return env s' fp v c
| NONE => Etype_error (fix_fp_state c fp))
else Etype_error (fix_fp_state c (shift_fp_state fp))
| _ =>
case do_app s op vs of
| NONE => Etype_error (fix_fp_state c fp)
| SOME (v1,Rval v') => return env v1 fp v' c
| SOME (v1,Rraise v) => Estep (env,v1,fp,Exn v,c))
Proof
rpt strip_tac >> Cases_on ‘getOpClass op’ >> gs[] >>
TOP_CASE_TAC >> gs[application_def]
>- (
Cases_on ‘op’ >> gs[application_def] >> every_case_tac >> gs[do_app_def] >>
every_case_tac >> gs[])
>- (
Cases_on ‘op’ >> gs[application_def] >> every_case_tac >> gs[do_app_def] >>
pop_assum $ mp_tac >>
rpt (TOP_CASE_TAC >> gvs[SF itree_ss]) >> gs[store_alloc_def])
QED
Theorem application_FFI_results:
(application (FFI s) env st fp vs cs = Etype_error (fix_fp_state cs fp)) ∨
(application (FFI s) env st fp vs cs = Estep (env, st, fp, Val $ Conv NONE [], cs)) ∨
∃conf ws lnum.
application (FFI s) env st fp vs cs =
Effi (ExtCall s) conf ws lnum env st cs
Proof
rw[application_thm] >> every_case_tac >> gvs[]
QED
Theorem application_eq_Effi_fields:
application op env st fp vs cs = Effi (ExtCall s) conf ws lnum env' st' cs' ⇒
op = FFI s ∧ env = env' ∧ st = st' ∧ cs' = cs ∧
∃conf' b.
vs = [Litv $ StrLit conf'; Loc b lnum] ∧
conf = MAP (λc. n2w $ ORD c) (EXPLODE conf')
Proof
Cases_on `op` >> simp[application_def, SF itree_ss] >>
every_case_tac >> gvs[] >> rw[]
QED
Theorem application_not_Edone:
application op env st_ffi fp vs cs ≠ Edone
Proof
rw[application_thm] >>
every_case_tac >> gvs[SF itree_ss]
QED
Theorem estep_to_Edone:
estep (env, st, fp, ev, cs) = Edone ⇔
(∃v. ev = Val v ∧ cs = []) ∨
(∃v env'. ev = Exn v ∧ cs = [])
Proof
reverse $ eq_tac
>- (rw[] >> gvs[SF itree_ss]) >>
Cases_on `ev` >> gvs[estep_def]
>- (
Cases_on `e` >> gvs[estep_def, SF itree_ss] >>
every_case_tac >> gvs[] >> rw[application_not_Edone]
) >>
Cases_on `cs` >> gvs[SF itree_ss] >>
PairCases_on `h` >> Cases_on `h0` >> gvs[SF itree_ss] >>
every_case_tac >> gvs[]
>- (
rename1 `Capp _ _ es` >>
Cases_on `es` >> gvs[SF itree_ss, application_not_Edone]
)
>- (
rename1 `Cmat l _` >> Cases_on `l` >> gvs[SF itree_ss] >>
PairCases_on `h` >> gvs[SF itree_ss] >> every_case_tac >> gvs[]
)
>- (
rename1 `Ccon _ _ es` >> Cases_on `es` >> gvs[SF itree_ss] >>
every_case_tac >> gvs[]
)
QED
Theorem dstep_to_Ddone:
dstep env dst dev dcs = Ddone ⇔
∃e. dev = Env e ∧ dcs = []
Proof
Cases_on `∃d. dev = Decl d` >> gvs[]
>- (Cases_on `d` >> gvs[dstep_def] >> every_case_tac >> gvs[]) >>
Cases_on `∃e. dev = Env e` >> gvs[]
>- (
Cases_on `dcs` >> gvs[SF ditree_ss] >>
Cases_on `h` >> Cases_on `l` >> gvs[SF ditree_ss]
) >>
Cases_on `dev` >> gvs[] >>
Cases_on `e` >> gvs[dstep_def] >>
Cases_on `l` >> gvs[dstep_def] >>
gvs[AllCaseEqs(), estep_to_Edone]
QED
Theorem is_halt_step_n_const:
∀n env e. is_halt (step_n env n e) ⇒
∀m. n < m ⇒ step_n env n e = step_n env m e
Proof
Induct >> rw[step_n_def]
>- (Cases_on `e` >> gvs[is_halt_def]) >>
Cases_on `e` >> gvs[step_n_def, is_halt_def] >>
Cases_on `m` >> gvs[step_n_def]
QED
Theorem is_halt_step_n_min:
∀n env e. is_halt (step_n env n e) ⇒
∃m. m ≤ n ∧ step_n env m e = step_n env n e ∧
∀l. l < m ⇒ ¬is_halt (step_n env l e)
Proof
Induct >> rw[step_n_alt_def] >>
every_case_tac >> gvs[is_halt_def]
>- (
last_x_assum kall_tac >>
qexists_tac `SUC n` >> simp[step_n_alt_def] >> rw[] >>
CCONTR_TAC >> gvs[] >>
Cases_on `l' = n` >> gvs[is_halt_def] >>
drule is_halt_step_n_const >>
disch_then $ qspec_then `n` assume_tac >> gvs[is_halt_def]
) >>
last_x_assum $ qspecl_then [`env`,`e`] assume_tac >> gvs[is_halt_def] >>
qexists_tac `m` >> simp[]
QED
Theorem step_until_halt_take_step:
∀dst dev dcs env. ¬ is_halt (Dstep dst dev dcs)
⇒ step_until_halt env (Dstep dst dev dcs) =
step_until_halt env (dstep env dst dev dcs)
Proof
rw[step_until_halt_def] >>
DEEP_INTRO_TAC some_intro >> rw[] >>
DEEP_INTRO_TAC some_intro >> rw[]
>- (
qspecl_then [`x`,`SUC x'`,`env`,`Dstep dst dev dcs`]
assume_tac is_halt_step_n_eq >>
gvs[step_n_def]
)
>- (Cases_on `x` >> gvs[step_n_def])
>- (first_x_assum $ qspec_then `SUC x` assume_tac >> gvs[step_n_def])
QED
Theorem cml_itree_unfold_err:
cml_itree_unfold_err f seed =
case f seed of
| Ret' r => Ret r
| Div' => Div
| Vis' (s, ws1, ws2) g =>
Vis (s, ws1, ws2)
(λa. case a of
INL x => Ret $ FinalFFI (s, ws1, ws2) x
| INR y =>
if LENGTH ws2 = LENGTH y then cml_itree_unfold_err f (g y)
else Ret $ FinalFFI (s, ws1, ws2) FFI_failed)
Proof
CASE_TAC >> gvs[cml_itree_unfold_err_def] >>
simp[Once itree_unfold_err] >>
PairCases_on `e` >> gvs[]
QED
Theorem interp:
interp env e =
case step_until_halt env e of
| Ret => Ret Termination
| Err => Ret Error
| Div => Div
| Act dst (s,ws1,ws2,n,env',cs) locs p dcs =>
Vis (s, ws1, ws2)
(λa. case a of
| INL x => Ret $ FinalFFI (s, ws1, ws2) x
| INR y =>
if LENGTH ws2 = LENGTH y then
interp env $
Dstep (dst with refs := LUPDATE (W8array y) n dst.refs)
(ExpVal env' (Val $ Conv NONE []) cs locs p) dcs
else Ret $ FinalFFI (s, ws1, ws2) FFI_failed)
Proof
rw[interp_def] >> rw[Once cml_itree_unfold_err] >> simp[] >>
CASE_TAC >> gvs[] >> rw[FUN_EQ_THM] >> PairCases_on `p` >> gvs[]
QED
Theorem trace_prefix_interp:
trace_prefix 0 (oracle, ffi_st) (interp env e) = ([], NONE) ∧
trace_prefix (SUC n) (oracle, ffi_st) (interp env e) =
case step_until_halt env e of
| Ret => ([], SOME Termination)
| Err => ([], SOME Error)
| Div => ([], NONE)
| Act dst (s,conf,ws,lnum,env',cs) locs pat dcs =>
case oracle s ffi_st conf ws of
| Oracle_return ffi_st' ws' =>
if LENGTH ws ≠ LENGTH ws' ∧ n = 0 then
([], NONE)
else if LENGTH ws ≠ LENGTH ws' then
([], SOME $ FinalFFI (s, conf, ws) FFI_failed)
else let (io, res) =
trace_prefix n (oracle, ffi_st')
(interp env $
Dstep (dst with refs := LUPDATE (W8array ws') lnum dst.refs)
(ExpVal env' (Val $ Conv NONE []) cs locs pat) dcs)
in ((IO_event s conf (ZIP (ws,ws')))::io, res)
| Oracle_final outcome =>
if n = 0 then ([], NONE) else
([], SOME $ FinalFFI (s, conf, ws) outcome)
Proof
rw[trace_prefix_def] >> rw[Once interp] >>
CASE_TAC >> gvs[trace_prefix_def] >>
PairCases_on `p` >> gvs[trace_prefix_def] >>
reverse $ CASE_TAC >> gvs[]
>- (Cases_on `n` >> gvs[trace_prefix_def]) >>
IF_CASES_TAC >> gvs[] >>
Cases_on `n` >> gvs[trace_prefix_def]
QED
(****************************************)
val _ = export_theory();