-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathfpOptPropsScript.sml
631 lines (580 loc) · 18.6 KB
/
fpOptPropsScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
(**
This file contains proofs about the matching and instantiation functions
defined in patternScript.sml
It also contains some compatibility lemmas for rwAllValTree, the value tree
rewriting function
**)
open fpOptTheory fpValTreeTheory semanticPrimitivesTheory;
open preamble;
val _ = new_theory "fpOptProps";
Theorem substLookup_substUpdate:
! s n.
substLookup s n = NONE ==>
! v. substUpdate n v s = NONE
Proof
Induct_on `s` \\ rpt strip_tac \\ simp[substLookup_def, Once substUpdate_def]
\\ TOP_CASE_TAC
\\ fs[substLookup_def]
\\ TOP_CASE_TAC \\ fs[] \\ res_tac
QED
Theorem substUpdate_substLookup:
∀ s1 s2 n v.
substUpdate n v s1 = SOME s2 ⇒
substLookup s2 n = SOME v
Proof
Induct_on ‘s1’ \\ simp[Once substUpdate_def] \\ rpt strip_tac
\\ Cases_on ‘h’ \\ fs[]
\\ Cases_on ‘n = q’ \\ fs[] \\ rveq
>- fs[substLookup_def]
\\ Cases_on ‘substUpdate n v s1’ \\ fs[] \\ res_tac
\\ rveq \\ fs[substLookup_def]
QED
Theorem substLookup_substUpdate_alt:
∀ s1 s2 n v.
substUpdate n v s1 = SOME s2 ⇒
∀ n2. substLookup s2 n2 = if (n = n2) then SOME v else substLookup s1 n2
Proof
Induct_on ‘s1’ \\ simp[Once substUpdate_def] \\ rpt strip_tac
\\ Cases_on ‘h’ \\ fs[]
\\ Cases_on ‘n = q’ \\ fs[] \\ rveq
>- fs[substLookup_def]
\\ Cases_on ‘substUpdate n v s1’ \\ fs[] \\ res_tac
\\ rveq \\ fs[substLookup_def]
\\ metis_tac[]
QED
Theorem substLookup_substAdd_alt:
∀ s n1 n2 v.
substLookup (substAdd n1 v s) n2 =
if (n1 = n2) then SOME v else substLookup s n2
Proof
Induct_on ‘s’ \\ simp [substAdd_def, Once substUpdate_def, substLookup_def]
\\ rpt strip_tac
\\ Cases_on ‘h’ \\ fs[]
\\ Cases_on ‘n1 = q’ \\ fs[] \\ rveq
>- simp[substLookup_def]
\\ Cases_on ‘substUpdate n1 v s’ \\ fs[]
\\ simp[substLookup_def]
\\ TOP_CASE_TAC \\ fs[]
\\ Cases_on ‘n1 = n2’ \\ fs[]
>- (rveq \\ imp_res_tac substUpdate_substLookup)
\\ imp_res_tac substLookup_substUpdate_alt
\\ fs[]
QED
(* Substitutions are only added to but not overwritten *)
Theorem matchWordTree_preserving:
! p v s1 s2.
matchWordTree p v s1 = SOME s2 ==>
! n val.
substLookup s1 n = SOME val ==> substLookup s2 n = SOME val
Proof
ho_match_mp_tac matchWordTree_ind
\\ rpt strip_tac
\\ fs[matchWordTree_def] \\ rveq
\\ fs[option_case_eq] \\ rveq \\ fs[substAdd_def]
\\ drule substLookup_substUpdate \\ disch_then (qspec_then `v` assume_tac)
\\ fs[substLookup_def]
\\ rename [`substLookup s1 m = SOME _`]
\\ Cases_on `n = m` \\ fs[]
QED
Theorem matchBoolTree_preserving:
! p v s1 s2.
matchBoolTree p v s1 = SOME s2 ==>
! n val.
substLookup s1 n = SOME val ==> substLookup s2 n = SOME val
Proof
ho_match_mp_tac matchBoolTree_ind
\\ rpt strip_tac
\\ fs[matchBoolTree_def] \\ rveq
\\ fs[option_case_eq] \\ rveq \\ fs[substAdd_def]
\\ imp_res_tac matchWordTree_preserving \\ res_tac
QED
Definition substMonotone_def:
substMonotone s1 s2 =
! n val. substLookup s1 n = SOME val ==> substLookup s2 n = SOME val
End
(* We can add dummy substitutions *)
Theorem instWordTree_weakening:
! p v s1 s2.
substMonotone s1 s2 /\
instWordTree p s1 = SOME v ==>
instWordTree p s2 = SOME v
Proof
Induct_on `p` \\ rpt strip_tac
\\ fs[instWordTree_def, substMonotone_def, pair_case_eq, option_case_eq]
\\ rveq \\ res_tac \\ fs[]
QED
Theorem instBoolTree_weakening:
! p v s1 s2.
substMonotone s1 s2 /\
instBoolTree p s1 = SOME v ==>
instBoolTree p s2 = SOME v
Proof
Induct_on `p` \\ rpt strip_tac
\\ imp_res_tac instWordTree_weakening
\\ fs[instBoolTree_def, substMonotone_def, pair_case_eq, option_case_eq]
\\ rveq \\ res_tac \\ fs[]
QED
(* Sanity lemmas *)
val wordSolve_tac =
irule instWordTree_weakening
\\ asm_exists_tac \\ fs[substMonotone_def]
\\ rpt strip_tac
\\ imp_res_tac matchWordTree_preserving \\ fs[];
Theorem subst_pat_is_word:
! p v s1 s2.
matchWordTree p v s1 = SOME s2 ==>
instWordTree p s2 = SOME v
Proof
Induct_on `p`
\\ rpt strip_tac \\ fs[]
\\ Cases_on `v`
\\ fs[matchWordTree_def, instWordTree_def, option_case_eq]
\\ rveq \\ fs[]
\\ imp_res_tac substLookup_substUpdate
\\ fs[substAdd_def, substLookup_def]
\\ res_tac \\ fs[]
\\ rpt conj_tac \\ wordSolve_tac
QED
val boolSolve_tac =
irule instWordTree_weakening
\\ fs[substMonotone_def]
\\ imp_res_tac matchWordTree_preserving
\\ imp_res_tac subst_pat_is_word
\\ asm_exists_tac \\ fs[];
Theorem subst_pat_is_bool:
! p v s1 s2.
matchBoolTree p v s1 = SOME s2 ==>
instBoolTree p s2 = SOME v
Proof
Induct_on `p`
\\ rpt strip_tac \\ fs[]
\\ Cases_on `v`
\\ fs[matchBoolTree_def, instBoolTree_def, option_case_eq]
\\ rveq \\ fs[]
\\ imp_res_tac substLookup_substUpdate
\\ fs[substAdd_def, substLookup_def]
\\ res_tac \\ fs[]
\\ rpt conj_tac \\ boolSolve_tac
QED
Theorem app_match_sym_word:
! p s v.
instWordTree p s = SOME v ==>
matchWordTree p v s = SOME s
Proof
Induct_on `p`
\\ rpt strip_tac
\\ fs[instWordTree_def, matchWordTree_def, option_case_eq]
\\ rveq \\ res_tac
\\ fs[matchWordTree_def]
QED
Theorem app_match_sym_bool:
! p s v.
instBoolTree p s = SOME v ==>
matchBoolTree p v s = SOME s
Proof
Induct_on `p`
\\ rpt strip_tac
\\ fs[instBoolTree_def, matchBoolTree_def, option_case_eq]
\\ imp_res_tac app_match_sym_word
\\ rveq \\ res_tac
\\ fs[matchBoolTree_def]
QED
Theorem nth_EL:
! n l x.
(nth l n = SOME x) ==> (EL (n-1) l = x /\ (n-1) < LENGTH l)
Proof
Induct_on `l` \\ fs[nth_def] \\ rpt strip_tac
>- (Cases_on `n = 1` \\ fs[] \\ rveq
\\ res_tac \\ Cases_on `n` \\ fs[]
\\ rename [`EL (n - 1) _ = x`]
\\ Cases_on `n` \\ fs[])
\\ Cases_on `n` \\ fs[]
\\ rename [`SUC n < _`] \\ Cases_on `n` \\ fs[]
\\ res_tac
\\ fs [GSYM ADD1]
QED
Theorem EL_nth:
! n l x.
EL n l = x /\ n < LENGTH l ==> nth l (n+1) = SOME x
Proof
Induct_on `l` \\ fs[nth_def]
\\ rpt strip_tac
\\ Cases_on `n = 0` \\ fs[]
\\ Cases_on `n` \\ fs[] \\ res_tac
\\ fs[ADD1]
QED
Theorem rwAllWordTree_empty_rewrites[simp]:
! insts v1 v2.
rwAllWordTree insts [] v1 = SOME v2 ==>
v1 = v2 /\ insts = []
Proof
Induct_on `insts` \\ fs[rwAllWordTree_def]
\\ ntac 4 strip_tac \\ CCONTR_TAC \\ fs[]
\\ Cases_on `h` \\ Cases_on `v1` \\ fs[rwAllWordTree_def, nth_def]
QED
Theorem rwAllBoolTree_empty_rewrites[simp]:
! insts v1 v2.
rwAllBoolTree insts [] v1 = SOME v2 ==>
v1 = v2 /\ insts = []
Proof
Induct_on `insts` \\ fs[rwAllBoolTree_def]
\\ ntac 4 strip_tac \\ CCONTR_TAC \\ fs[]
\\ Cases_on `h` \\ Cases_on `v1` \\ fs[rwAllBoolTree_def, nth_def]
QED
Theorem rwAllWordTree_id[simp]:
! rws v. ? insts. rwAllWordTree insts rws v = SOME v
Proof
rpt strip_tac \\ qexists_tac `[]` \\ EVAL_TAC
QED
Theorem rwAllBoolTree_id[simp]:
! rws v. ? insts. rwAllBoolTree insts rws v = SOME v
Proof
rpt strip_tac \\ qexists_tac `[]` \\ EVAL_TAC
QED
Theorem rwAllWordTree_up:
! insts rws1 rws2 v1 v2.
set rws1 SUBSET set rws2 /\
rwAllWordTree insts rws1 v1 = SOME v2 ==>
?insts2. rwAllWordTree insts2 rws2 v1 = SOME v2
Proof
Induct_on `insts` \\ fs[rwAllWordTree_def] \\ rpt strip_tac
\\ Cases_on `h` \\ rename1 `RewriteApp pth ind`
\\ fs[rwAllWordTree_def, option_case_eq]
\\ res_tac
\\ fs[SUBSET_DEF, MEM_EL] \\ imp_res_tac nth_EL
\\ `?n. n < LENGTH rws2 /\ rw = EL n rws2`
by (first_x_assum (qspecl_then [`rw`] irule)
\\ asm_exists_tac \\ imp_res_tac nth_EL \\ asm_exists_tac \\ fs[])
\\ rename [`rwAllWordTree insts3 rws2 v_new = SOME v2`]
\\ qexists_tac `RewriteApp pth (n + 1) :: insts3`
\\ fs[rwAllWordTree_def]
\\ `nth rws2 (n+1) = SOME rw` suffices_by (fs[])
\\ irule EL_nth \\ fs[]
QED
Theorem rwAllBoolTree_up:
! insts rws1 rws2 v1 v2.
set rws1 SUBSET set rws2 /\
rwAllBoolTree insts rws1 v1 = SOME v2 ==>
?insts2. rwAllBoolTree insts2 rws2 v1 = SOME v2
Proof
Induct_on `insts` \\ fs[rwAllBoolTree_def] \\ rpt strip_tac
\\ Cases_on `h` \\ rename1 `RewriteApp pth ind`
\\ fs[rwAllBoolTree_def, option_case_eq]
\\ res_tac
\\ fs[SUBSET_DEF, MEM_EL] \\ imp_res_tac nth_EL
\\ `?n. n < LENGTH rws2 /\ rw = EL n rws2`
by (first_x_assum (qspecl_then [`rw`] irule)
\\ asm_exists_tac \\ imp_res_tac nth_EL \\ asm_exists_tac \\ fs[])
\\ rename [`rwAllBoolTree insts3 rws2 v_new = SOME v2`]
\\ qexists_tac `RewriteApp pth (n + 1) :: insts3`
\\ fs[rwAllBoolTree_def]
\\ `nth rws2 (n+1) = SOME rw` suffices_by (fs[])
\\ irule EL_nth \\ fs[]
QED
Theorem rwAllWordTree_comp_unop:
! v vres insts rws u.
rwAllWordTree insts rws v = SOME vres ==>
? insts_new.
rwAllWordTree insts_new rws (Fp_uop u v) = SOME (Fp_uop u vres)
Proof
Induct_on `insts` \\ rpt strip_tac
\\ fs[rwAllWordTree_def]
\\ Cases_on `h` \\ fs[rwAllWordTree_def, option_case_eq]
\\ res_tac
\\ first_x_assum (qspec_then `u` assume_tac) \\ fs[]
\\ qexists_tac `(RewriteApp (Center f) n):: insts_new`
\\ fs[rwAllWordTree_def, rwFp_pathWordTree_def, option_case_eq]
\\ qexists_tac `Fp_uop u vNew` \\ fs[]
QED
Theorem rwAllWordTree_comp_right:
! b v1 v2 vres insts rws.
rwAllWordTree insts rws v2 = SOME vres ==>
?insts_new.
rwAllWordTree insts_new rws (Fp_bop b v1 v2) =
SOME (Fp_bop b v1 vres)
Proof
Induct_on `insts` \\ rpt strip_tac
\\ fs[rwAllWordTree_def]
\\ Cases_on `h` \\ fs[rwAllWordTree_def, option_case_eq]
\\ res_tac
\\ first_x_assum (qspecl_then [`v1`, `b`] assume_tac)
\\ fs[]
\\ qexists_tac `(RewriteApp (Right f) n):: insts_new`
\\ fs[rwAllWordTree_def, rwFp_pathWordTree_def]
QED
Theorem rwAllWordTree_comp_left:
! b v1 v2 vres insts rws.
rwAllWordTree insts rws v1 = SOME vres ==>
? insts_new.
rwAllWordTree insts_new rws (Fp_bop b v1 v2) =
SOME (Fp_bop b vres v2)
Proof
Induct_on `insts` \\ rpt strip_tac
\\ fs[rwAllWordTree_def]
\\ Cases_on `h` \\ fs[rwAllWordTree_def, option_case_eq]
\\ res_tac
\\ first_x_assum (qspecl_then [`v2`, `b`] assume_tac)
\\ fs[]
\\ qexists_tac `(RewriteApp (Left f) n):: insts_new`
\\ fs[rwAllWordTree_def, rwFp_pathWordTree_def]
QED
Theorem rwAllWordTree_comp_terop_l:
! v vres v2 v3 insts rws t.
rwAllWordTree insts rws v = SOME vres ==>
? insts_new.
rwAllWordTree insts_new rws (Fp_top t v v2 v3) =
SOME (Fp_top t vres v2 v3)
Proof
Induct_on `insts` \\ rpt strip_tac \\ fs[rwAllWordTree_def]
\\ Cases_on `h `\\ fs[rwAllWordTree_def, option_case_eq]
\\ res_tac
\\ first_x_assum (qspecl_then [`v3`, `v2`, `t`] assume_tac) \\ fs[]
\\ qexists_tac `(RewriteApp (Left f) n)::insts_new`
\\ fs[rwAllWordTree_def, rwFp_pathWordTree_def]
QED
Theorem rwAllWordTree_comp_terop_r:
! v vres v1 v2 insts rws t.
rwAllWordTree insts rws v = SOME vres ==>
? insts_new.
rwAllWordTree insts_new rws (Fp_top t v1 v2 v) =
SOME (Fp_top t v1 v2 vres)
Proof
Induct_on `insts` \\ rpt strip_tac \\ fs[rwAllWordTree_def]
\\ Cases_on `h `\\ fs[rwAllWordTree_def, option_case_eq]
\\ res_tac
\\ first_x_assum (qspecl_then [`v2`, `v1`, `t`] assume_tac) \\ fs[]
\\ qexists_tac `(RewriteApp (Right f) n)::insts_new`
\\ fs[rwAllWordTree_def, rwFp_pathWordTree_def]
QED
Theorem rwAllWordTree_comp_terop_c:
! v vres v1 v2 insts rws t.
rwAllWordTree insts rws v = SOME vres ==>
? insts_new.
rwAllWordTree insts_new rws (Fp_top t v1 v v2) =
SOME (Fp_top t v1 vres v2)
Proof
Induct_on `insts` \\ rpt strip_tac \\ fs[rwAllWordTree_def]
\\ Cases_on `h `\\ fs[rwAllWordTree_def, option_case_eq]
\\ res_tac
\\ first_x_assum (qspecl_then [`v2`, `v1`, `t`] assume_tac) \\ fs[]
\\ qexists_tac `(RewriteApp (Center f) n)::insts_new`
\\ fs[rwAllWordTree_def, rwFp_pathWordTree_def]
QED
Theorem rwAllWordTree_comp_scope_T:
! sc v vres insts rws t.
rwAllWordTree insts rws v = SOME vres ==>
? insts_new.
rwAllWordTree insts_new rws (Fp_wopt sc v) = SOME (Fp_wopt sc vres)
Proof
Induct_on `insts` \\ rpt strip_tac \\ fs[rwAllWordTree_def]
\\ Cases_on `h `\\ fs[rwAllWordTree_def, option_case_eq]
\\ res_tac
\\ first_x_assum (qspecl_then [`sc`, `vNew`, `vres`, `rws`] assume_tac) \\ fs[]
\\ res_tac
\\ qexists_tac `(RewriteApp (Center f) n)::insts_new`
\\ Cases_on `sc`
\\ fs[rwAllWordTree_def, rwFp_pathWordTree_def]
QED
Theorem rwAllWordTree_comp_scope:
! sc v vres insts rws t.
rwAllWordTree insts rws v = SOME vres ==>
? insts_new.
rwAllWordTree insts_new rws (Fp_wopt sc v) = SOME (Fp_wopt sc vres)
Proof
Induct_on `insts` \\ rpt strip_tac \\ fs[rwAllWordTree_def]
\\ Cases_on `h `\\ fs[rwAllWordTree_def, option_case_eq]
\\ res_tac
\\ first_x_assum
(qspecl_then [`sc`, `vNew`, `vres`, `rws`] assume_tac) \\ fs[]
\\ res_tac
\\ qexists_tac `(RewriteApp (Center f) n)::insts_new`
\\ Cases_on `sc`
\\ fs[rwAllWordTree_def, rwFp_pathWordTree_def]
QED
(*
Theorem rwAllWordTree_cond_T:
! insts. (! rws v v_opt.
rwAllWordTree insts rws v = SOME v_opt ==>
rwAllWordTree insts T rws v = SOME v_opt)
Proof
Induct_on `insts` \\ rpt strip_tac \\ fs[rwAllWordTree_def]
\\ Cases_on `h` \\ fs[rwAllWordTree_def, option_case_eq]
\\ imp_res_tac rwFp_pathWordTree_cond_T
\\ asm_exists_tac \\ fs[]
\\ first_x_assum irule \\ asm_exists_tac \\ fs[]
QED
*)
Theorem rwAllWordTree_chaining_exact:
!v1 v2 v3 insts1 insts2 rws.
rwAllWordTree insts1 rws v1 = SOME v2 /\
rwAllWordTree insts2 rws v2 = SOME v3 ==>
rwAllWordTree (APPEND insts1 insts2) rws v1 = SOME v3
Proof
Induct_on `insts1` \\ rpt strip_tac
\\ fs[rwAllWordTree_def]
\\ Cases_on `h` \\ fs[rwAllWordTree_def, option_case_eq]
QED
Theorem rwAllWordTree_chaining:
! insts1 v1 v2 v3 insts2 rws.
rwAllWordTree insts1 rws v1 = SOME v2 /\
rwAllWordTree insts2 rws v2 = SOME v3 ==>
?insts3. rwAllWordTree insts3 rws v1 = SOME v3
Proof
metis_tac[rwAllWordTree_chaining_exact]
QED
(*
NOTE that option_map has been deleted and replaced by OPTION_MAP
so option_map_compute_thm and option_map no longer exist
Theorem rwFp_pathBoolTree_cond_T:
! p rw v v_opt.
rwFp_pathBoolTree rw p v = SOME v_opt ==>
rwFp_pathBoolTree T rw p v = SOME v_opt
Proof
reverse (Induct_on `p`) \\ fs[] \\ rpt strip_tac
>- (Cases_on `canOpt` \\ fs[rwFp_pathBoolTree_def])
\\ Cases_on `v`
\\ fs[rwFp_pathBoolTree_def, option_map_compute_thm, option_case_eq]
\\ res_tac \\ rveq \\ fs[]
\\ imp_res_tac rwFp_pathWordTree_cond_T
QED
Theorem rwAllBoolTree_comp_scope_T:
! sc v vres insts rws t.
rwAllBoolTree insts rws v = SOME vres ==>
? insts_new.
rwAllBoolTree insts_new rws (Fp_bopt sc v) = SOME (Fp_bopt sc vres)
Proof
Induct_on `insts` \\ rpt strip_tac \\ fs[rwAllBoolTree_def]
\\ Cases_on `h `\\ fs[rwAllBoolTree_def, option_case_eq]
\\ res_tac
\\ first_x_assum (qspecl_then [`sc`, `vNew`, `vres`, `rws`] assume_tac) \\ fs[]
\\ res_tac
\\ qexists_tac `(RewriteApp (Center f) n)::insts_new`
\\ Cases_on `sc`
\\ fs[rwAllBoolTree_def, rwFp_pathBoolTree_def, option_map_def]
QED
*)
Theorem rwAllBoolTree_comp_scope:
! sc v vres insts rws t.
rwAllBoolTree insts rws v = SOME vres ==>
? insts_new.
rwAllBoolTree insts_new rws (Fp_bopt sc v) = SOME (Fp_bopt sc vres)
Proof
Induct_on `insts` \\ rpt strip_tac \\ fs[rwAllBoolTree_def]
\\ Cases_on `h `\\ fs[rwAllBoolTree_def, option_case_eq]
\\ res_tac
\\ first_x_assum
(qspecl_then [`sc`, `vNew`, `vres`, `rws`] assume_tac) \\ fs[]
\\ res_tac
\\ qexists_tac `(RewriteApp (Center f) n)::insts_new`
\\ Cases_on `sc`
\\ fs[rwAllBoolTree_def, rwFp_pathBoolTree_def]
QED
(*
Theorem rwAllBoolTree_cond_T:
! insts. (! rws v v_opt.
rwAllBoolTree insts rws v = SOME v_opt ==>
rwAllBoolTree insts T rws v = SOME v_opt)
Proof
Induct_on `insts` \\ rpt strip_tac \\ fs[rwAllBoolTree_def]
\\ Cases_on `h` \\ fs[rwAllBoolTree_def, option_case_eq]
\\ imp_res_tac rwFp_pathBoolTree_cond_T
\\ asm_exists_tac \\ fs[]
\\ first_x_assum irule \\ asm_exists_tac \\ fs[]
QED
*)
Theorem rwAllBoolTree_chaining_exact:
!v1 v2 v3 insts1 insts2 rws.
rwAllBoolTree insts1 rws v1 = SOME v2 /\
rwAllBoolTree insts2 rws v2 = SOME v3 ==>
rwAllBoolTree (APPEND insts1 insts2) rws v1 = SOME v3
Proof
Induct_on `insts1` \\ rpt strip_tac
\\ fs[rwAllBoolTree_def]
\\ Cases_on `h` \\ fs[rwAllBoolTree_def, option_case_eq]
QED
Theorem rwAllBoolTree_chaining:
! insts1 v1 v2 v3 insts2 rws.
rwAllBoolTree insts1 rws v1 = SOME v2 /\
rwAllBoolTree insts2 rws v2 = SOME v3 ==>
?insts3. rwAllBoolTree insts3 rws v1 = SOME v3
Proof
metis_tac[rwAllBoolTree_chaining_exact]
QED
(* TODO: Move *)
fun impl_subgoal_tac th =
let
val hyp_to_prove = lhand (concl th)
in
SUBGOAL_THEN hyp_to_prove (fn thm => assume_tac (MP th thm))
end;
Theorem nth_NONE:
! xs n.
LENGTH xs < n ==>
nth xs n = NONE
Proof
Induct_on `xs` \\ fs[fpOptTheory.nth_def]
QED
Theorem nth_app:
! xs ys x n.
nth xs n = SOME x ==>
nth (xs ++ ys) n = SOME x
Proof
Induct_on `xs` \\ fs[fpOptTheory.nth_def]
\\ rpt strip_tac \\ fs[]
\\ TOP_CASE_TAC \\ fs[]
QED
Theorem rwAllWordTree_append_opt:
! sched rws1 rws2 v r.
rwAllWordTree sched rws1 v = SOME r ==>
rwAllWordTree sched (rws1 ++ rws2) v = SOME r
Proof
Induct_on `sched` \\ fs[rwAllWordTree_def] \\ rpt gen_tac
\\ Cases_on `h` \\ fs[rwAllWordTree_def]
\\ ntac 2 (TOP_CASE_TAC \\ fs[])
\\ imp_res_tac nth_app \\ fs[]
QED
Theorem rwAllBoolTree_append_opt:
! sched rws1 rws2 v r.
rwAllBoolTree sched rws1 v = SOME r ==>
rwAllBoolTree sched (rws1 ++ rws2) v = SOME r
Proof
Induct_on `sched` \\ fs[rwAllBoolTree_def] \\ rpt gen_tac
\\ Cases_on `h` \\ fs[rwAllBoolTree_def]
\\ ntac 2 (TOP_CASE_TAC \\ fs[])
\\ imp_res_tac nth_app \\ fs[]
QED
Theorem do_fprw_up:
! v sched1 rws1 rws2 x.
do_fprw v sched1 rws1 = x /\
set rws1 SUBSET set rws2 ==>
? sched2. do_fprw v sched2 rws2 = x
Proof
Cases_on `sched1` \\ simp[do_fprw_def]
\\ rpt strip_tac
>- (qexists_tac `[]` \\ fs[]
\\ rpt (TOP_CASE_TAC \\ fs[rwAllWordTree_def, rwAllBoolTree_def]))
\\ drule rwAllWordTree_up
\\ drule rwAllBoolTree_up
\\ ntac 2 (TOP_CASE_TAC \\ fs[])
\\ TRY (rpt strip_tac \\ qexists_tac `[RewriteApp Here 0]` \\ fs[] \\ NO_TAC)
\\ rpt strip_tac \\ res_tac
\\ TOP_CASE_TAC
\\ TRY (
FIRST_X_ASSUM drule \\ disch_then assume_tac \\ fs[]
\\ qexists_tac `insts2` \\ fs[]
\\ asm_exists_tac \\ fs[] \\ NO_TAC)
\\ qexists_tac `[RewriteApp Here (LENGTH rws2 + 1)]`
\\ fs[rwAllWordTree_def, rwAllBoolTree_def, nth_NONE]
QED
Theorem do_fprw_append_opt:
! v sched1 rws1 x.
do_fprw v sched1 rws1 = x ==>
! rws2.
? sched2.
do_fprw v sched2 (rws1 ++ rws2) = x
Proof
rpt strip_tac \\ drule do_fprw_up \\ disch_then assume_tac
\\ first_x_assum (qspec_then `rws1 ++ rws2` impl_subgoal_tac)
\\ fs[SUBSET_DEF] \\ asm_exists_tac \\ fs[]
QED
val _ = export_theory();