-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreflectionScript.sml
2979 lines (2785 loc) · 114 KB
/
reflectionScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
open preamble countableLib countableTheory
open basicReflectionLib
open setSpecTheory holSyntaxLibTheory holSyntaxTheory holSyntaxExtraTheory holSemanticsTheory holSemanticsExtraTheory
open holBoolSyntaxTheory holBoolTheory holExtensionTheory holConsistencyTheory holAxiomsSyntaxTheory holAxiomsTheory
open holConstrainedExtensionTheory
local open holSyntaxLib in end
val _ = temp_tight_equality()
val _ = new_theory"reflection"
val _ = Parse.remove_type_abbrev"reln"
(* TODO: this is a hack... *)
val tyvar_inst_exists2 = store_thm("tyvar_inst_exists2",
``∃i. tyvar = REV_ASSOCD b1 i b1 ∧
tyvar = REV_ASSOCD b2 i b2``,
qexists_tac`[(tyvar,b1);(tyvar,b2)]` >>
EVAL_TAC)
val tyvar_inst_exists2_diff = store_thm("tyvar_inst_exists2_diff",
``b1 ≠ b2 ⇒
∃i. ty1 = REV_ASSOCD b1 i b1 ∧
ty2 = REV_ASSOCD b2 i b2``,
strip_tac >>
qexists_tac`[(ty1,b1);(ty2,b2)]` >>
EVAL_TAC >> rw[])
(* -- *)
val provable_imp_eq_true = store_thm("provable_imp_eq_true",
``∀thy i v.
is_set_theory ^mem ⇒
i models thy ⇒
is_valuation (tysof (sigof thy)) (tyaof i) v
⇒
∀p. (thy,[]) |- p ⇒ termsem (tmsof (sigof thy)) i v p = True``,
rw[] >>
imp_res_tac holSoundnessTheory.proves_sound >>
fs[entails_def] >> res_tac >>
fs[satisfies_def])
val mp_lemma = store_thm("mp_lemma",
``(a ==> b) /\ (c ==> a) ==> (c ==> b)``,
metis_tac[])
val good_context_def = Define`
good_context ^mem (^tysig,^tmsig) (^tyass,^tmass) ⇔
is_set_theory ^mem ∧
is_std_sig ^signatur ∧
is_interpretation ^signatur ^interpretation ∧
is_std_interpretation ^interpretation`
val good_context = good_context_def |> concl |> strip_forall |> snd |> lhs
val is_valuation = ``is_valuation ^tysig ^tyass ^valuation``
val good_context_unpaired = store_thm("good_context_unpaired",
``good_context mem sig i ⇔
is_set_theory mem ∧
is_std_sig sig ∧
is_interpretation sig i ∧
is_std_interpretation i``,
map_every PairCases_on[`sig`,`i`]>>rw[good_context_def])
val finv_def = Define`
finv f x = @y. f y = x`
val wf_to_inner_def = xDefine"wf_to_inner"`
wf_to_inner0 ^mem f = ∃x. BIJ f UNIV {a | mem a x}`
val _ = Parse.overload_on("wf_to_inner",``wf_to_inner0 ^mem``)
val wf_to_inner_finv_left = store_thm("wf_to_inner_finv_left",
``∀ina.
wf_to_inner ina ⇒ ∀x. finv ina (ina x) = x``,
rw[finv_def] >>
SELECT_ELIM_TAC >>
conj_tac >-metis_tac[] >>
fs[wf_to_inner_def,BIJ_DEF,INJ_DEF])
val ext_def = xDefine"ext"`
ext0 ^mem s = { a | mem a s }`
val _ = Parse.overload_on("ext",``ext0 ^mem``)
val range_def = xDefine"range"`
range0 ^mem (f : α -> 'U) = @x. BIJ f UNIV {a | mem a x}`
val _ = Parse.overload_on("range",``range0 ^mem``)
val wf_to_inner_bij_thm = store_thm("wf_to_inner_bij_thm",
``∀f. wf_to_inner f ⇒ BIJ f UNIV (ext (range f))``,
rw[wf_to_inner_def,range_def] >>
SELECT_ELIM_TAC >> conj_tac >- metis_tac[] >>
rw[ext_def])
val wf_to_inner_range_thm = store_thm("wf_to_inner_range_thm",
``∀f x. wf_to_inner f ⇒ f x <: range f``,
rw[] >>
imp_res_tac wf_to_inner_bij_thm >>
fs[BIJ_DEF,ext_def,INJ_DEF])
val wf_to_inner_finv_right = store_thm("wf_to_inner_finv_right",
``∀ina.
wf_to_inner ina ⇒ ∀x. x <: range ina ⇒
(ina (finv ina x)) = x``,
rw[finv_def] >>
SELECT_ELIM_TAC >>
conj_tac >-(
imp_res_tac wf_to_inner_bij_thm >>
fs[ext_def,BIJ_DEF,SURJ_DEF] ) >>
rw[])
val bool_to_inner_def = xDefine"bool_to_inner"`
bool_to_inner0 ^mem = Boolean`
val _ = Parse.overload_on("bool_to_inner",``bool_to_inner0 ^mem``)
val wf_to_inner_bool_to_inner = store_thm("wf_to_inner_bool_to_inner",
``is_set_theory ^mem ⇒
wf_to_inner bool_to_inner``,
rw[wf_to_inner_def,BIJ_IFF_INV] >>
qexists_tac`boolset` >>
rw[bool_to_inner_def,boolean_in_boolset] >>
qexists_tac`λx. x = True` >>
rw[bool_to_inner_def,boolean_eq_true] >>
rfs[mem_boolset,boolean_eq_true,true_neq_false,boolean_def])
val fun_to_inner_def = xDefine"fun_to_inner"`
fun_to_inner0 ^mem ina inb f =
Abstract (range ina) (range inb) (λx. inb (f (finv ina x)))`
val _ = Parse.overload_on("fun_to_inner",``fun_to_inner0 ^mem``)
val out_fun_def = xDefine"out_fun"`
out_fun0 ^mem ina inb mf x = finv inb (mf ' (ina x))`
val _ = Parse.overload_on("out_fun",``out_fun0 ^mem``)
val wf_to_inner_fun_to_inner = store_thm("wf_to_inner_fun_to_inner",
``is_set_theory ^mem ⇒
∀ina inb. wf_to_inner ina ∧ wf_to_inner inb ⇒ wf_to_inner (fun_to_inner ina inb)``,
rw[] >>
rw[wf_to_inner_def,BIJ_IFF_INV] >>
qexists_tac`Funspace (range ina) (range inb)` >>
conj_tac >- (
rw[fun_to_inner_def] >>
match_mp_tac (UNDISCH abstract_in_funspace) >>
simp[range_def] >>
SELECT_ELIM_TAC >>
conj_tac >- metis_tac[wf_to_inner_def] >>
rw[] >>
SELECT_ELIM_TAC >>
conj_tac >- metis_tac[wf_to_inner_def] >>
rw[] >>
fs[BIJ_IFF_INV] ) >>
qexists_tac`out_fun ina inb` >>
conj_tac >- (
rw[out_fun_def,fun_to_inner_def,FUN_EQ_THM] >>
qmatch_abbrev_tac`finv invb (Abstract s t f ' a) = Z` >>
rfs[] >>
`Abstract s t f ' a = f a` by (
match_mp_tac (UNDISCH apply_abstract) >>
imp_res_tac wf_to_inner_bij_thm >>
fs[ext_def,BIJ_IFF_INV] >>
unabbrev_all_tac >> fs[] ) >>
rw[Abbr`Z`,Abbr`f`,Abbr`a`,Abbr`invb`] >>
imp_res_tac wf_to_inner_finv_left >>
simp[] ) >>
rw[fun_to_inner_def,out_fun_def] >>
first_x_assum(mp_tac o
MATCH_MP(REWRITE_RULE[GSYM AND_IMP_INTRO](UNDISCH in_funspace_abstract))) >>
rw[] >>
match_mp_tac (UNDISCH abstract_eq) >>
gen_tac >>
qspecl_then[`f`,`ina (finv ina x)`,`range ina`,`range inb`]mp_tac
(UNDISCH apply_abstract) >>
impl_tac >- (
imp_res_tac wf_to_inner_bij_thm >>
fs[ext_def,BIJ_DEF,INJ_DEF] ) >>
rw[] >>
imp_res_tac wf_to_inner_finv_right >>
rw[])
val range_bool_to_inner = store_thm("range_bool_to_inner",
``is_set_theory ^mem ⇒
range bool_to_inner = boolset``,
strip_tac >>
imp_res_tac wf_to_inner_bool_to_inner >>
imp_res_tac wf_to_inner_bij_thm >>
imp_res_tac is_extensional >>
pop_assum mp_tac >>
simp[extensional_def] >>
disch_then kall_tac >>
fs[ext_def,BIJ_IFF_INV,mem_boolset] >>
fs[bool_to_inner_def,boolean_def] >>
metis_tac[] )
val range_fun_to_inner = store_thm("range_fun_to_inner",
``is_set_theory ^mem ∧ wf_to_inner ina ∧ wf_to_inner inb ⇒
range (fun_to_inner ina inb) = Funspace (range ina) (range inb)``,
rw[] >>
strip_assume_tac(SPEC_ALL (UNDISCH wf_to_inner_fun_to_inner)) >> rfs[] >>
imp_res_tac wf_to_inner_bij_thm >>
imp_res_tac is_extensional >>
pop_assum mp_tac >>
simp[extensional_def] >>
disch_then kall_tac >>
fs[ext_def,BIJ_IFF_INV] >>
rw[EQ_IMP_THM] >- (
fs[fun_to_inner_def] >>
res_tac >>
pop_assum(SUBST1_TAC o SYM) >>
match_mp_tac (UNDISCH abstract_in_funspace) >>
rw[] ) >>
qspecl_then[`a`,`range ina`,`range inb`]mp_tac (UNDISCH in_funspace_abstract) >>
simp[] >> strip_tac >>
qpat_x_assum`a = X`(SUBST1_TAC) >>
qsuff_tac`∃x. Abstract (range ina) (range inb) f = fun_to_inner ina inb x` >- metis_tac[] >>
rw[fun_to_inner_def] >>
qexists_tac`finv inb o f o ina` >>
match_mp_tac (UNDISCH abstract_eq) >> simp[] >>
metis_tac[wf_to_inner_finv_right,wf_to_inner_finv_left])
val finv_bool_to_inner_eq_true = store_thm("finv_bool_to_inner_eq_true",
``is_set_theory ^mem ⇒
∀x.
((x = True) ⇒ finv bool_to_inner x) ∧
(x <: boolset ∧ finv bool_to_inner x ⇒ (x = True))``,
metis_tac[wf_to_inner_finv_right,bool_to_inner_def,boolean_def,range_bool_to_inner,wf_to_inner_bool_to_inner,wf_to_inner_finv_left])
val finv_bool_to_inner_True = prove(
``^good_context ⇒
(finv bool_to_inner x ⇒ y) ⇒ ((x = True) ⇒ y)``,
metis_tac[finv_bool_to_inner_eq_true,good_context_def]) |> UNDISCH
val _ = save_thm("finv_bool_to_inner_True",finv_bool_to_inner_True)
val [count_mlstring_aux_inj_rwt] = mk_count_aux_inj_rwt[``:mlstring``]
val [count_type_aux_inj_rwt] = mk_count_aux_inj_rwt_ttac[``:type``]
(SOME(WF_REL_TAC`measure type_size`>>gen_tac>>Induct>>
rw[type_size_def]>>res_tac>>simp[]))
val countable_type = inj_rwt_to_countable count_type_aux_inj_rwt
val type_rep_def = new_specification("type_rep_def",["type_rep"],
countable_type |> REWRITE_RULE[countable_def])
val num_def = xDefine"num"`
(num0 ^mem (0:num) = empty mem) ∧
(num0 ^mem (SUC n) = num0 mem n + one mem)`
val _ = Parse.overload_on("num",``num0 ^mem``)
val num_not_one = store_thm("num_not_one",
``is_set_theory ^mem ⇒ ∀n. num n ≠ One``,
strip_tac >> Induct >> rw[num_def] >>
imp_res_tac is_extensional >> fs[extensional_def] >> pop_assum kall_tac >>
rfs[mem_empty,mem_one,mem_upair] >>
`One ≠ ∅` by (
imp_res_tac is_extensional >> fs[extensional_def] >> pop_assum kall_tac >>
simp[mem_one,mem_empty] ) >>
fs[EQ_IMP_THM] >> metis_tac[])
val num_suc_not_empty = store_thm("num_suc_not_empty",
``is_set_theory ^mem ⇒ ∀n. num (SUC n) ≠ ∅``,
rw[num_def] >>
imp_res_tac is_extensional >> fs[extensional_def] >> pop_assum kall_tac >>
simp[mem_empty,mem_upair] >> metis_tac[])
val num_inj = store_thm("num_inj",
``is_set_theory ^mem ⇒
∀m n. (num m = num n) ⇔ (m = n)``,
strip_tac >>
Induct >> simp[num_def] >- (
Cases >> simp[num_def] >> rw[] >>
imp_res_tac is_extensional >>
fs[extensional_def] >> pop_assum kall_tac >>
simp[mem_empty,mem_upair] >>
metis_tac[] ) >>
Cases >> rw[num_def] >- (
imp_res_tac is_extensional >>
fs[extensional_def] >> pop_assum kall_tac >>
simp[mem_empty,mem_upair] >>
metis_tac[] ) >>
fs[EQ_IMP_THM] >> rw[] >>
first_x_assum match_mp_tac >>
imp_res_tac is_extensional >>
fs[extensional_def] >> pop_assum kall_tac >>
rfs[mem_upair] >> metis_tac[num_not_one])
val pair_not_empty = store_thm("pair_not_empty",
``is_set_theory ^mem ⇒ ∀x y. (x,y) ≠ ∅``,
rw[] >>
imp_res_tac is_extensional >> fs[extensional_def] >> pop_assum kall_tac >>
simp[mem_empty,pair_def,mem_upair] >> metis_tac[])
val pair_not_one = store_thm("pair_not_one",
``is_set_theory ^mem ⇒ ∀x y. (x,y) ≠ One``,
rw[] >>
imp_res_tac is_extensional >> fs[extensional_def] >> pop_assum kall_tac >>
rfs[mem_one,mem_empty,mem_upair,pair_def] >> rw[] >>
spose_not_then strip_assume_tac >>
first_x_assum(qspec_then`∅`mp_tac) >> simp[] >>
imp_res_tac is_extensional >> fs[extensional_def] >> pop_assum kall_tac >>
simp[mem_empty,mem_unit,mem_upair] >>
metis_tac[])
val tag_exists = prove(
``∃tag:('U->'U->bool)->type->'U->'U.
∀mem. is_set_theory mem ⇒
(∀ty1 v1 ty2 v2.
(((ty1,v1) ≠ (ty2,v2)) ⇒ tag mem ty1 v1 ≠ tag mem ty2 v2)) ∧
(∀ty v. ∃u. IMAGE (tag mem ty) (ext v) = ext u) ∧
(∀ty v. ¬ (tag mem ty v <: boolset) ∧
(∀x y. ¬ (tag mem ty v <: Funspace x y)))``,
qexists_tac`λmem ty x. Two ∪ (Unit(num (type_rep ty), x))` >>
gen_tac >> strip_tac >> simp[] >>
conj_tac >- (
rpt gen_tac >>
qmatch_abbrev_tac`p ⇒ q` >> strip_tac >>
qunabbrev_tac`q` >>
imp_res_tac is_extensional >>
pop_assum mp_tac >>
simp[extensional_def] >>
disch_then kall_tac >>
simp[mem_binary_union,mem_boolset,mem_unit] >>
qexists_tac`num(type_rep ty1),v1` >>
simp[pair_inj,num_inj] >>
conj_tac >- (
simp[true_def,false_def,pair_not_empty,pair_not_one] ) >>
fs[Abbr`p`] >>
metis_tac[type_rep_def,INJ_DEF,IN_UNIV]) >>
conj_tac >- (
rw[EXTENSION,PULL_EXISTS,ext_def] >>
qexists_tac`Pow (boolset ∪ Unit(num (type_rep ty)) × v) suchthat
λx. ∃a. a <: v ∧ x = boolset ∪ Unit (num (type_rep ty),a)` >>
simp[mem_sub,mem_power] >> gen_tac >>
reverse EQ_TAC >- metis_tac[] >> strip_tac >>
reverse conj_tac >- metis_tac[] >>
rfs[mem_binary_union,mem_unit,mem_product] >> rw[] >>
rw[pair_inj]) >>
rw[] >- (
simp[mem_boolset,true_def,false_def] >>
imp_res_tac is_extensional >> fs[extensional_def] >> pop_assum kall_tac >>
simp[mem_binary_union,mem_unit,mem_boolset,true_def,false_def,mem_empty,mem_one] >>
simp[EQ_IMP_THM] >>
metis_tac[pair_not_empty] ) >>
strip_tac >>
imp_res_tac (UNDISCH in_funspace_abstract) >>
qpat_x_assum`X = Y`mp_tac >>
imp_res_tac is_extensional >> fs[extensional_def] >> pop_assum kall_tac >>
simp[EQ_IMP_THM,EXISTS_OR_THM] >> disj1_tac >>
srw_tac[boolSimps.DNF_ss][mem_binary_union,mem_boolset,true_def] >> disj1_tac >>
simp[abstract_def,mem_sub,mem_product,pair_not_empty])
val tag_def =
new_specification("tag_def",["tag0"],tag_exists)
|> SPEC mem
val _ = overload_on("tag",``tag0 ^mem``)
val _ = save_thm("tag_def",tag_def)
val to_inner_def = xDefine"to_inner"`
to_inner0 ^mem (ty:type) = (tag ty) o (@f. wf_to_inner f)`
val _ = overload_on("to_inner",``to_inner0 ^mem``)
val Var_thm = prove(
``^tmval (x,ty) = inty v ⇒
∀mem. inty v = termsem0 mem ^tmsig ^interpretation ^valuation (Var x ty)``,
rw[termsem_def])
val Const_thm = prove(
``instance ^tmsig ^interpretation name ty ^tyval = inty c ⇒
∀mem. inty c = termsem0 mem ^tmsig ^interpretation ^valuation (Const name ty)``,
rw[termsem_def])
val Comb_thm = prove(
``^good_context ⇒
termsem ^tmsig ^interpretation ^valuation ftm =
fun_to_inner ina inb f ∧
termsem ^tmsig ^interpretation ^valuation xtm = ina x ⇒
wf_to_inner ina ⇒ wf_to_inner inb
⇒
termsem ^tmsig ^interpretation ^valuation (Comb ftm xtm) =
inb (f x)``,
rw[good_context_def,termsem_def] >>
first_assum(SUBST1_TAC o SYM) >>
rw[fun_to_inner_def] >>
match_mp_tac apply_abstract_matchable >>
simp[] >>
rw[wf_to_inner_range_thm] >>
AP_TERM_TAC >>
AP_TERM_TAC >>
match_mp_tac wf_to_inner_finv_left >>
simp[]) |> UNDISCH
val Abs_thm = prove(
``^good_context ⇒ ^is_valuation ⇒
∀ina inb f x xty b bty.
typesem tyass tyval xty = range ina ∧
typesem tyass tyval bty = range inb ⇒
(*
wf_to_inner ina ⇒ (* these are unnecessary for this theorem *)
wf_to_inner inb ⇒ (* but useful for the automation *)
*)
term_ok (tysig,tmsig) b ∧
typeof b = bty ∧
(∀m. m <: range ina ⇒
termsem tmsig (tyass,tmass) (tyval,((x,xty) =+ m) tmval) b =
inb (f (finv ina m)))
⇒
termsem tmsig (tyass,tmass) (tyval,tmval) (Abs (Var x xty) b) =
fun_to_inner ina inb f
``,
rw[termsem_def,fun_to_inner_def,good_context_def] >>
match_mp_tac (UNDISCH abstract_eq) >> simp[] >>
rw[] >>
res_tac >> first_x_assum(SUBST1_TAC o SYM) >>
first_assum(SUBST1_TAC o SYM) >>
match_mp_tac (UNDISCH termsem_typesem) >>
simp[] >>
qexists_tac`(tysig,tmsig)` >> simp[] >>
fs[is_std_interpretation_def] >>
fs[is_valuation_def,is_term_valuation_def] >>
simp[combinTheory.APPLY_UPDATE_THM] >>
rw[] >> metis_tac[]) |> funpow 2 UNDISCH
val save_thms = map2 (curry save_thm)
val _ = save_thms ["Var_thm","Const_thm","Comb_thm","Abs_thm"]
[ Var_thm , Const_thm , Comb_thm , Abs_thm ]
val tyass_bool_thm = prove(
``is_set_theory ^mem ⇒ is_std_type_assignment tyass ==> (tyass (strlit"bool") [] = range bool_to_inner)``,
rw[is_std_type_assignment_def,range_bool_to_inner]) |> funpow 2 UNDISCH
val tyass_fun_thm = prove(
``is_set_theory ^mem ⇒ is_std_type_assignment tyass ==> !tya tyb ina inb.
wf_to_inner ina /\ wf_to_inner inb /\ tya = range ina /\ tyb = range inb ==>
tyass (strlit"fun") [tya; tyb] = range (fun_to_inner ina inb)``,
rw[is_std_type_assignment_def,range_fun_to_inner]
) |> funpow 2 UNDISCH
val good_context_lookup_bool = prove(
``^good_context ⇒ FLOOKUP ^tysig (strlit "bool") = SOME 0``,
rw[good_context_def,is_std_sig_def]) |> UNDISCH
val good_context_lookup_fun = prove(
``^good_context ⇒ FLOOKUP ^tysig (strlit "fun") = SOME 2``,
rw[good_context_def,is_std_sig_def]) |> UNDISCH
val is_valuation_extend = prove(
``^is_valuation ∧ m <: typesem ^tyass ^tyval ty ⇒
is_valuation ^tysig ^tyass (^tyval,(((x,ty) =+ m) ^tmval))``,
rw[is_valuation_def,is_term_valuation_def,combinTheory.APPLY_UPDATE_THM] >>
rw[] >> rw[])
val good_context_instance_equality = prove(
``∀ty ina.
^good_context ∧ ^is_valuation ∧
type_ok ^tysig ty ∧
typesem ^tyass ^tyval ty = range ina ∧
wf_to_inner ina ⇒
instance ^tmsig ^interpretation (strlit"=") (Fun ty (Fun ty Bool)) ^tyval =
fun_to_inner ina (fun_to_inner ina bool_to_inner) $=``,
rw[good_context_def] >>
fs[is_std_sig_def] >>
imp_res_tac instance_def >>
first_x_assum(qspec_then`[ty,Tyvar (strlit"A")]`mp_tac) >>
simp[holSyntaxLibTheory.REV_ASSOCD] >>
disch_then(mp_tac o SPEC interpretation) >>
simp[] >> disch_then kall_tac >>
EVAL_STRING_SORT >> simp[holSyntaxLibTheory.REV_ASSOCD] >>
fs[is_std_interpretation_def,interprets_def] >>
first_x_assum(qspec_then`(strlit"A"=+ typesem ^tyass ^tyval ty)(K boolset)`mp_tac) >>
impl_tac >- (
simp[is_type_valuation_def,combinTheory.APPLY_UPDATE_THM] >>
reverse(rw[mem_boolset]) >- metis_tac[] >>
qpat_x_assum`X = Y` (SUBST1_TAC o SYM) >>
match_mp_tac (UNDISCH typesem_inhabited) >>
fs[is_valuation_def,is_interpretation_def] >>
metis_tac[] ) >>
simp[combinTheory.APPLY_UPDATE_THM,mlstringTheory.implode_def] >>
disch_then kall_tac >>
simp[fun_to_inner_def] >>
match_mp_tac (UNDISCH abstract_eq) >>
simp[] >> gen_tac >> strip_tac >>
conj_tac >- (
match_mp_tac (UNDISCH abstract_in_funspace) >>
simp[boolean_in_boolset] ) >>
Q.ISPECL_THEN[`mem`,`bool_to_inner`,`ina`]mp_tac (GEN_ALL range_fun_to_inner) >>
impl_tac >- ( simp[wf_to_inner_bool_to_inner] ) >>
strip_tac >> simp[range_bool_to_inner] >>
Q.ISPECL_THEN[`mem`,`bool_to_inner`,`ina`]mp_tac (GEN_ALL range_fun_to_inner) >>
impl_tac >- ( simp[wf_to_inner_bool_to_inner] ) >>
strip_tac >> simp[range_bool_to_inner] >>
conj_tac >- (
match_mp_tac (UNDISCH abstract_in_funspace) >>
simp[bool_to_inner_def,boolean_in_boolset] ) >>
match_mp_tac (UNDISCH abstract_eq) >>
simp[bool_to_inner_def,boolean_in_boolset] >>
simp[boolean_def] >> rw[true_neq_false] >>
spose_not_then strip_assume_tac >>
metis_tac[wf_to_inner_finv_right])
val _ = save_thms
["tyass_bool_thm", "tyass_fun_thm",
"good_context_lookup_bool","good_context_lookup_fun",
"is_valuation_extend", "good_context_instance_equality"]
[ tyass_bool_thm , tyass_fun_thm ,
good_context_lookup_bool , good_context_lookup_fun ,
is_valuation_extend, good_context_instance_equality ]
val base_tyval_exists = prove(
``∃τ. ∀mem. is_set_theory mem ⇒ is_type_valuation0 mem (τ mem)``,
rw[GSYM SKOLEM_THM,is_type_valuation_def] >>
qexists_tac`K (one mem)` >> rw[] >>
qexists_tac`empty mem` >>
metis_tac[mem_one])
val base_tyval_prim_def = new_specification("base_tyval_prim_def",["base_tyval0"],base_tyval_exists)
val _ = overload_on("base_tyval",``base_tyval0 ^mem``)
val base_tyval_def = save_thm("base_tyval_def",base_tyval_prim_def |> ISPEC mem |> UNDISCH)
val is_type_valuation_update_list = store_thm("is_type_valuation_update_list",
``∀ls t. is_type_valuation t ⇒ EVERY (inhabited o SND) ls ⇒ is_type_valuation (t =++ ls)``,
simp[AND_IMP_INTRO] >>
Induct >> simp[UPDATE_LIST_THM] >> rw[] >>
first_x_assum match_mp_tac >> rw[] >>
fs[is_type_valuation_def,combinTheory.APPLY_UPDATE_THM] >>
rw[] >> metis_tac[])
val inhabited_range = store_thm("inhabited_range",
``∀inx. wf_to_inner inx ⇒ inhabited (range inx)``,
rw[] >> imp_res_tac wf_to_inner_range_thm >>
metis_tac[] )
val init_model_def = new_specification("init_model_def",["init_model0"],
SIMP_RULE std_ss [GSYM RIGHT_EXISTS_IMP_THM,SKOLEM_THM] (GEN_ALL init_ctxt_has_model))
val _ = overload_on("init_model",``init_model0 ^mem``)
val bool_ctxt_no_new_axioms =
``(∀p. MEM (NewAxiom p) (mk_bool_ctxt init_ctxt) ⇒
MEM (NewAxiom p) init_ctxt)``
|> (EVAL THENC (SIMP_CONV std_ss []))
|> EQT_ELIM
val bool_model_exists =
extends_consistent
|> UNDISCH
|> Q.SPECL[`init_ctxt`,`mk_bool_ctxt init_ctxt`]
|> C MATCH_MP bool_extends_init
|> SPEC ``init_model``
|> REWRITE_RULE[GSYM AND_IMP_INTRO]
|> C MATCH_MP init_theory_ok
|> C MATCH_MP (UNDISCH (SPEC mem init_model_def))
|> C MATCH_MP bool_ctxt_no_new_axioms
|> DISCH_ALL |> GEN_ALL
|> SIMP_RULE std_ss [GSYM RIGHT_EXISTS_IMP_THM,SKOLEM_THM]
val bool_model_def = new_specification("bool_model_def",["bool_model0"],
bool_model_exists)
val _ = overload_on("bool_model",``bool_model0 ^mem``)
val bool_model_models = UNDISCH (SPEC mem bool_model_def)
val bool_theory_ok =
extends_theory_ok
|> Q.SPECL[`init_ctxt`,`mk_bool_ctxt init_ctxt`]
|> SIMP_RULE std_ss [bool_extends_init,init_theory_ok]
val bool_model_interpretation =
bool_has_bool_interpretation
|> UNDISCH
|> Q.SPEC`init_ctxt`
|> Q.SPEC`bool_model`
|> SIMP_RULE std_ss [bool_model_models,bool_theory_ok]
val _ = map2 (curry save_thm)
["bool_theory_ok","bool_model_interpretation","bool_model_models"]
[ bool_theory_ok , bool_model_interpretation , bool_model_models]
val not_thm = prove(
``is_set_theory ^mem ⇒
(Abstract boolset boolset (λx. Boolean (¬finv bool_to_inner x)) =
Abstract boolset boolset (λp. Boolean (p ≠ True)))``,
rw[] >>
match_mp_tac (UNDISCH abstract_eq) >>
simp[boolean_in_boolset] >>
rw[boolean_def] >>
metis_tac[finv_bool_to_inner_eq_true])
val fun_to_inner_not =
``fun_to_inner bool_to_inner bool_to_inner $~``
|> SIMP_CONV std_ss [Once bool_to_inner_def,fun_to_inner_def,UNDISCH range_bool_to_inner,UNDISCH not_thm]
val bool_to_inner_false =
``bool_to_inner F``
|> SIMP_CONV std_ss [bool_to_inner_def,boolean_def]
val bool_to_inner_true =
``bool_to_inner T``
|> SIMP_CONV std_ss [bool_to_inner_def,boolean_def]
val range_fun_to_inner_ina_bool_to_inner =
range_fun_to_inner |> GEN_ALL |> SPEC mem
|> Q.ISPECL[`bool_to_inner`,`ina:'a -> 'U`]
|> SIMP_RULE std_ss [UNDISCH wf_to_inner_bool_to_inner,GSYM AND_IMP_INTRO]
|> UNDISCH |> UNDISCH
val forall_thm = prove(
``is_set_theory ^mem ⇒ wf_to_inner ina ⇒
(Abstract (Funspace (range ina) boolset) boolset
(λP. Boolean (∀x. x <: range ina ⇒ Holds P x)) =
Abstract (Funspace (range ina) boolset) boolset
(λx. bool_to_inner ($! (finv (fun_to_inner ina bool_to_inner) x))))``,
rw[] >>
match_mp_tac (UNDISCH abstract_eq) >>
rw[boolean_in_boolset,Once bool_to_inner_def] >>
rw[Once bool_to_inner_def] >> AP_TERM_TAC >>
`∃f. (x = fun_to_inner ina Boolean (λa. (f (ina a)) = True)) ∧
(∀a. f (ina a) <: boolset)` by (
simp[UNDISCH range_bool_to_inner,fun_to_inner_def,GSYM bool_to_inner_def] >>
qspecl_then[`x`,`range ina`,`boolset`]mp_tac (UNDISCH in_funspace_abstract) >>
impl_tac >- metis_tac[inhabited_range,mem_boolset] >> rw[] >>
qexists_tac`f` >> simp[bool_to_inner_def] >>
reverse conj_tac >- metis_tac[wf_to_inner_range_thm] >>
match_mp_tac (UNDISCH abstract_eq) >>
simp[boolean_in_boolset] >> rw[] >>
simp[boolean_def] >> rw[] >>
imp_res_tac wf_to_inner_finv_right >>
metis_tac[mem_boolset] ) >>
Q.ISPEC_THEN`fun_to_inner ina Boolean`mp_tac wf_to_inner_finv_left >>
impl_tac >- metis_tac[wf_to_inner_fun_to_inner,wf_to_inner_bool_to_inner,bool_to_inner_def] >>
simp[holds_def,GSYM bool_to_inner_def] >>
disch_then kall_tac >>
rw[EQ_IMP_THM] >- (
first_x_assum(qspec_then`ina a`mp_tac) >>
impl_tac >- metis_tac[wf_to_inner_range_thm] >>
simp[fun_to_inner_def] >>
disch_then (SUBST1_TAC o SYM) >>
match_mp_tac EQ_SYM >>
match_mp_tac apply_abstract_matchable >>
simp[wf_to_inner_range_thm,GSYM bool_to_inner_def,range_bool_to_inner] >>
simp[bool_to_inner_def,boolean_in_boolset] >>
Q.ISPEC_THEN`ina`mp_tac wf_to_inner_finv_left >> rw[] >>
rw[boolean_def] >>
metis_tac[mem_boolset] ) >>
rw[fun_to_inner_def] >>
match_mp_tac apply_abstract_matchable >>
simp[wf_to_inner_range_thm,GSYM bool_to_inner_def,range_bool_to_inner] >>
simp[bool_to_inner_def,boolean_in_boolset] >>
rw[boolean_def]) |> UNDISCH |> UNDISCH
val fun_to_inner_forall =
``fun_to_inner (fun_to_inner ina bool_to_inner) bool_to_inner $!``
|> SIMP_CONV std_ss [fun_to_inner_def,UNDISCH range_bool_to_inner,range_fun_to_inner_ina_bool_to_inner,GSYM forall_thm]
val exists_thm = prove(
``is_set_theory ^mem ⇒ wf_to_inner ina ⇒
(Abstract (Funspace (range ina) boolset) boolset
(λP. Boolean (?x. x <: range ina ∧ Holds P x)) =
Abstract (Funspace (range ina) boolset) boolset
(λx. bool_to_inner ($? (finv (fun_to_inner ina bool_to_inner) x))))``,
rw[] >>
match_mp_tac (UNDISCH abstract_eq) >>
rw[boolean_in_boolset,Once bool_to_inner_def] >>
rw[Once bool_to_inner_def] >> AP_TERM_TAC >>
`∃f. (x = fun_to_inner ina Boolean (λa. (f (ina a)) = True)) ∧
(∀a. f (ina a) <: boolset)` by (
simp[UNDISCH range_bool_to_inner,fun_to_inner_def,GSYM bool_to_inner_def] >>
qspecl_then[`x`,`range ina`,`boolset`]mp_tac (UNDISCH in_funspace_abstract) >>
impl_tac >- metis_tac[inhabited_range,mem_boolset] >> rw[] >>
qexists_tac`f` >> simp[bool_to_inner_def] >>
reverse conj_tac >- metis_tac[wf_to_inner_range_thm] >>
match_mp_tac (UNDISCH abstract_eq) >>
simp[boolean_in_boolset] >> rw[] >>
simp[boolean_def] >> rw[] >>
imp_res_tac wf_to_inner_finv_right >>
metis_tac[mem_boolset] ) >>
Q.ISPEC_THEN`fun_to_inner ina Boolean`mp_tac wf_to_inner_finv_left >>
impl_tac >- metis_tac[wf_to_inner_fun_to_inner,wf_to_inner_bool_to_inner,bool_to_inner_def] >>
simp[holds_def,GSYM bool_to_inner_def] >>
disch_then kall_tac >>
rw[EQ_IMP_THM] >- (
qmatch_assum_rename_tac`z <: range ina` >>
qexists_tac`finv ina z` >>
pop_assum mp_tac >>
simp[fun_to_inner_def] >>
disch_then (SUBST1_TAC o SYM) >>
match_mp_tac EQ_SYM >>
match_mp_tac apply_abstract_matchable >>
simp[wf_to_inner_range_thm,GSYM bool_to_inner_def,range_bool_to_inner] >>
simp[bool_to_inner_def,boolean_in_boolset] >>
rw[boolean_def] >>
metis_tac[mem_boolset] ) >>
rw[fun_to_inner_def] >>
qexists_tac`ina a` >>
conj_tac >- metis_tac[wf_to_inner_range_thm] >>
match_mp_tac apply_abstract_matchable >>
simp[wf_to_inner_range_thm,GSYM bool_to_inner_def,range_bool_to_inner] >>
simp[bool_to_inner_def,boolean_in_boolset] >>
rw[boolean_def] >>
metis_tac[wf_to_inner_finv_left]) |> UNDISCH |> UNDISCH
val fun_to_inner_exists =
``fun_to_inner (fun_to_inner ina bool_to_inner) bool_to_inner $?``
|> SIMP_CONV std_ss [fun_to_inner_def,UNDISCH range_bool_to_inner,range_fun_to_inner_ina_bool_to_inner,GSYM exists_thm]
val range_fun_to_inner_bool_to_inner_bool_to_inner =
range_fun_to_inner |> GEN_ALL |> SPEC mem
|> Q.ISPECL[`bool_to_inner`,`bool_to_inner`]
|> SIMP_RULE std_ss [UNDISCH wf_to_inner_bool_to_inner]
|> UNDISCH
val binop_thm1 = prove(
``is_set_theory ^mem ∧ p <: boolset ⇒
(Abstract boolset boolset (λx. bool_to_inner (op (finv bool_to_inner p) (finv bool_to_inner x))) =
Abstract boolset boolset (λq. Boolean (op (p = True) (q = True))))``,
rw[] >>
match_mp_tac (UNDISCH abstract_eq) >>
rw[boolean_in_boolset] >>
rw[Once bool_to_inner_def,boolean_in_boolset] >>
`EVERY (λz. z = True ⇔ finv bool_to_inner z) [p;x]` by (
simp[] >> metis_tac[finv_bool_to_inner_eq_true]) >>
fs[boolean_def])
val binop_thm = prove(
``is_set_theory ^mem ⇒
(Abstract boolset (Funspace boolset boolset)
(λy. Abstract boolset boolset (λx. bool_to_inner (op (finv bool_to_inner y) (finv bool_to_inner x)))) =
Abstract boolset (Funspace boolset boolset)
(λp. Abstract boolset boolset (λq. Boolean (op (p = True) (q = True)))))``,
rw[] >>
match_mp_tac (UNDISCH abstract_eq) >>
rw[binop_thm1] >>
match_mp_tac (UNDISCH abstract_in_funspace) >>
rw[boolean_in_boolset])
val fun_to_inner_binop =
``fun_to_inner bool_to_inner (fun_to_inner bool_to_inner bool_to_inner) op``
|> SIMP_CONV std_ss [fun_to_inner_def,UNDISCH range_bool_to_inner,range_fun_to_inner_bool_to_inner_bool_to_inner,UNDISCH binop_thm]
val fun_to_inner_select = prove(
``is_set_theory ^mem ⇒ wf_to_inner ina ⇒
(fun_to_inner (fun_to_inner ina bool_to_inner) ina $@ =
Abstract (range (fun_to_inner ina bool_to_inner)) (range ina)
(λp. ina (@x. Holds p (ina x))))``,
rw[fun_to_inner_def] >>
match_mp_tac (UNDISCH abstract_eq) >>
simp[bool_to_inner_def,boolean_in_boolset] >>
simp[wf_to_inner_range_thm] >>
simp[GSYM bool_to_inner_def] >>
Q.ISPEC_THEN`bool_to_inner`mp_tac(Q.GEN`inb`range_fun_to_inner) >>
impl_tac >- metis_tac[wf_to_inner_bool_to_inner] >> rw[] >>
AP_TERM_TAC >> AP_TERM_TAC >>
qmatch_abbrev_tac`l = r` >>
qsuff_tac`fun_to_inner ina bool_to_inner l = fun_to_inner ina bool_to_inner r` >- (
`wf_to_inner (fun_to_inner ina bool_to_inner)` by metis_tac[wf_to_inner_fun_to_inner,wf_to_inner_bool_to_inner] >>
fs[wf_to_inner_def,BIJ_DEF,INJ_DEF] ) >>
Q.ISPEC_THEN`fun_to_inner ina bool_to_inner`mp_tac wf_to_inner_finv_right >>
impl_tac >- metis_tac[wf_to_inner_fun_to_inner,wf_to_inner_bool_to_inner] >>
simp[range_fun_to_inner] >> disch_then(qspec_then`x`mp_tac) >>
impl_tac >- simp[] >>
simp[Abbr`l`] >> disch_then kall_tac >>
simp[Abbr`r`] >>
Q.ISPECL_THEN[`x`,`range ina`,`range bool_to_inner`]mp_tac(UNDISCH in_funspace_abstract) >>
impl_tac >- ( metis_tac[inhabited_range,wf_to_inner_bool_to_inner] ) >>
rw[] >>
simp[fun_to_inner_def] >>
match_mp_tac (UNDISCH abstract_eq) >>
simp[range_bool_to_inner] >>
simp[bool_to_inner_def,boolean_in_boolset] >>
rw[holds_def] >>
qmatch_abbrev_tac`f x = Boolean (b:'U = True)` >>
`b = f x` by (
simp[Abbr`b`] >>
match_mp_tac apply_abstract_matchable >>
metis_tac[wf_to_inner_finv_right,range_bool_to_inner] ) >>
rw[boolean_def] >>
metis_tac[range_bool_to_inner,mem_boolset]) |> UNDISCH
local
val dest_fun_to_inner = dest_triop ``fun_to_inner0`` (mk_HOL_ERR"""dest_fun_to_inner""")
val range_fun_to_inner0 =
range_fun_to_inner
|> Q.GENL[`inb`,`ina`,`mem`]
|> SIMP_RULE std_ss [GSYM AND_IMP_INTRO]
in
fun range_fun_to_inner_conv tm =
let
val fun_to_inner_ina_inb = rand tm
val (mem,ina,inb) = dest_fun_to_inner fun_to_inner_ina_inb
val th = ISPECL[mem,ina,inb] range_fun_to_inner0 |> funpow 3 UNDISCH
in
REWR_CONV th tm
end
end
val fun_to_inner_equals = prove(
``is_set_theory ^mem ⇒ wf_to_inner ina ⇒
(fun_to_inner ina (fun_to_inner ina bool_to_inner) $= =
Abstract (range ina) (Funspace (range ina) boolset)
(λx. Abstract (range ina) boolset (λy. Boolean (x = y))))``,
rw[] >>
rw[fun_to_inner_def] >>
assume_tac (UNDISCH wf_to_inner_bool_to_inner) >>
CONV_TAC(DEPTH_CONV range_fun_to_inner_conv) >>
simp[range_bool_to_inner] >>
match_mp_tac (UNDISCH abstract_eq) >>
simp[] >> rw[] >>
TRY (
match_mp_tac (UNDISCH abstract_in_funspace) >>
simp[bool_to_inner_def,boolean_in_boolset] ) >>
match_mp_tac (UNDISCH abstract_eq) >>
simp[bool_to_inner_def,boolean_in_boolset] >>
rw[boolean_def] >>
metis_tac[wf_to_inner_finv_right]) |> funpow 2 UNDISCH
val _ = map2 (curry save_thm)
["fun_to_inner_not","fun_to_inner_forall","fun_to_inner_exists","fun_to_inner_binop","bool_to_inner_false","bool_to_inner_true","fun_to_inner_select","fun_to_inner_equals"]
[ fun_to_inner_not , fun_to_inner_forall , fun_to_inner_exists , fun_to_inner_binop , bool_to_inner_false , bool_to_inner_true , fun_to_inner_select , fun_to_inner_equals ]
val std_sig_instances = store_thm("std_sig_instances",
``is_std_sig sig ⇒
(instance (tmsof sig) i (strlit"=") (Fun ty (Fun ty Bool)) =
(λτ. tmaof i (strlit"=") [typesem (tyaof i) τ ty]))``,
rw[is_std_sig_def] >>
Q.ISPECL_THEN[`tmsof sig`,`i`,`strlit"="`]mp_tac instance_def >> simp[] >>
disch_then(qspec_then`[ty,Tyvar (strlit"A")]`mp_tac) >>
EVAL_TAC >> simp[])
val is_select_sig_def = Define`
is_select_sig sig ⇔
is_bool_sig sig ∧
(FLOOKUP (tmsof sig) (strlit"@") = SOME (Fun (Fun (Tyvar (strlit"A")) Bool) (Tyvar (strlit"A"))))`
val select_sig_instances = store_thm("select_sig_instances",
``is_select_sig sig ⇒
(instance (tmsof sig) i (strlit"@") (Fun (Fun ty Bool) ty) =
(λτ. tmaof i (strlit"@") [typesem (tyaof i) τ ty]))``,
rw[is_select_sig_def] >>
Q.ISPECL_THEN[`tmsof sig`,`i`,`strlit"@"`]mp_tac instance_def >> simp[] >>
disch_then(qspec_then`[ty,Tyvar (strlit"A")]`mp_tac) >>
EVAL_TAC >> rw[])
val bool_sig_defs = [is_true_sig_def,is_false_sig_def,is_implies_sig_def,
is_and_sig_def,is_or_sig_def,is_not_sig_def,is_forall_sig_def,is_exists_sig_def]
val select_has_select_sig = store_thm("select_has_select_sig",
``is_bool_sig (sigof ctxt) ⇒ is_select_sig (sigof (mk_select_ctxt ctxt))``,
rw[is_select_sig_def] >- (
fs([is_bool_sig_def,mk_select_ctxt_def,FLOOKUP_UPDATE]@bool_sig_defs) >>
fs[is_std_sig_def,FLOOKUP_UPDATE] ) >>
EVAL_TAC)
val eta_theory_ok = prove(
``theory_ok (thyof (mk_eta_ctxt (mk_bool_ctxt init_ctxt)))``,
match_mp_tac (MP_CANON extends_theory_ok) >>
REWRITE_TAC[Once CONJ_COMM] >>
match_exists_tac (concl bool_theory_ok) >>
conj_tac >- ACCEPT_TAC bool_theory_ok >>
match_mp_tac eta_extends >>
match_mp_tac is_bool_sig_std >>
match_mp_tac bool_has_bool_sig >>
ACCEPT_TAC (MATCH_MP theory_ok_sig init_theory_ok |> SIMP_RULE std_ss[]) )
val select_model_exists = prove(
``∃f. ∀mem select. is_set_theory mem ⇒ good_select select ⇒
equal_on (sigof (mk_eta_ctxt (mk_bool_ctxt init_ctxt))) (bool_model0 mem) (f mem select) ∧
f mem select models thyof (mk_select_ctxt (mk_eta_ctxt (mk_bool_ctxt init_ctxt))) ∧
(tmaof (f mem select) (strlit"@") = λls.
Abstract (Funspace (HD ls) boolset) (HD ls)
(λp. select (HD ls) (Holds p)))``,
rw[GSYM SKOLEM_THM,RIGHT_EXISTS_IMP_THM] >>
qspec_then`mk_eta_ctxt (mk_bool_ctxt init_ctxt)`mp_tac(UNDISCH select_has_model_gen) >>
impl_keep_tac >- (
simp[eta_theory_ok] >>
EVAL_TAC ) >>
disch_then match_mp_tac >>
conj_asm1_tac >- (
match_mp_tac (MP_CANON (UNDISCH eta_has_model)) >>
conj_tac >- (
match_mp_tac is_bool_sig_std >>
match_mp_tac bool_has_bool_sig >>
ACCEPT_TAC (MATCH_MP theory_ok_sig init_theory_ok |> SIMP_RULE std_ss[]) ) >>
simp[bool_model_def] ) >>
assume_tac bool_model_interpretation >>
fs[is_bool_interpretation_def])
val select_model_def = new_specification("select_model_def",["select_model0"],
select_model_exists)
val _ = overload_on("select_model",``select_model0 ^mem``)
val select_model_models = GEN_ALL (UNDISCH (SPEC_ALL (SPEC mem select_model_def)))
val select_extends_bool = prove(
``mk_select_ctxt (mk_bool_ctxt init_ctxt) extends mk_bool_ctxt init_ctxt``,
match_mp_tac select_extends >>
conj_tac >- (
match_mp_tac is_bool_sig_std >>
match_mp_tac bool_has_bool_sig >>
ACCEPT_TAC (MATCH_MP theory_ok_sig init_theory_ok |> SIMP_RULE std_ss[]) ) >>
EVAL_TAC )
val select_extends_eta = prove(
``mk_select_ctxt (mk_eta_ctxt (mk_bool_ctxt init_ctxt)) extends mk_eta_ctxt (mk_bool_ctxt init_ctxt)``,
match_mp_tac select_extends >>
conj_tac >- (
ACCEPT_TAC (MATCH_MP theory_ok_sig eta_theory_ok |> SIMP_RULE std_ss[])) >>
EVAL_TAC )
val select_theory_ok =
extends_theory_ok
|> Q.SPECL[`mk_eta_ctxt (mk_bool_ctxt init_ctxt)`,`mk_select_ctxt (mk_eta_ctxt (mk_bool_ctxt init_ctxt))`]
|> SIMP_RULE std_ss [eta_theory_ok,select_extends_eta]
val bool_interpretation_defs =
[is_true_interpretation_def,
is_and_interpretation_def,
is_implies_interpretation_def,
is_forall_interpretation_def,
is_exists_interpretation_def,
is_or_interpretation_def,
is_false_interpretation_def,
is_not_interpretation_def]
val extends_bool_interpretation = prove(
``is_set_theory ^mem ⇒
∀model.
is_std_interpretation model ∧
equal_on (sigof (mk_bool_ctxt init_ctxt)) bool_model model ⇒
is_bool_interpretation model``,
rw[] >>
assume_tac bool_model_interpretation >>
fs([equal_on_def,is_bool_interpretation_def]@bool_interpretation_defs) >>
fs[term_ok_def] >>
rpt conj_tac >>
qmatch_abbrev_tac`tmaof model interprets name on args as val` >>
first_x_assum(qspec_then`name`mp_tac) >>
qunabbrev_tac`name` >>
CONV_TAC(LAND_CONV(LAND_CONV EVAL)) >>
simp[Abbr`args`,Abbr`val`,type_ok_def,FLOOKUP_UPDATE] >>
fs[interprets_def] >> rw[] >>
TRY( first_x_assum match_mp_tac >>
metis_tac[base_tyval_def] ) >>
fs[PULL_EXISTS,type_ok_def,FLOOKUP_UPDATE] >>
first_x_assum(qspec_then`[]`mp_tac)>>
(impl_tac >- EVAL_TAC) >> rw[]) |> UNDISCH
val select_bool_interpretation = prove(
``is_set_theory ^mem ⇒
good_select select ⇒
is_bool_interpretation (select_model select)``,
rw[] >>
match_mp_tac (MP_CANON extends_bool_interpretation) >>
first_assum(strip_assume_tac o MATCH_MP select_model_models) >>
conj_tac >- fs[models_def] >>
match_mp_tac equal_on_reduce >>
fs[mk_eta_ctxt_def] >>
qexists_tac`[]`>>simp[]) |> UNDISCH |> UNDISCH
val infinity_extends_select = prove(
``mk_infinity_ctxt (mk_select_ctxt (mk_eta_ctxt (mk_bool_ctxt init_ctxt))) extends
(mk_select_ctxt (mk_eta_ctxt (mk_bool_ctxt init_ctxt)))``,
match_mp_tac infinity_extends >>
conj_tac >- (
ACCEPT_TAC select_theory_ok ) >>
EVAL_TAC)
val hol_theory_ok = save_thm("hol_theory_ok",
extends_theory_ok
|> Q.SPECL[`mk_select_ctxt (mk_eta_ctxt (mk_bool_ctxt init_ctxt))`,`mk_infinity_ctxt (mk_select_ctxt (mk_eta_ctxt (mk_bool_ctxt init_ctxt)))`]
|> SIMP_RULE std_ss [select_theory_ok,infinity_extends_select]
|> SIMP_RULE std_ss [GSYM hol_ctxt_def])
(* probably not true
val is_bool_interpretation_subinterpretation = store_thm("is_bool_interpretation_subinterpretation",
``is_set_theory ^mem ⇒
(is_bool_interpretation model ⇔
subinterpretation (mk_bool_ctxt init_ctxt) bool_model model)``,
strip_tac >> EQ_TAC >> strip_tac >- (
simp[subinterpretation_def] >>
assume_tac bool_model_interpretation >>
simp[term_ok_def,type_ok_def] >>
conj_tac >> rpt gen_tac >>
CONV_TAC(LAND_CONV EVAL) >>
rw[] >>
fs[is_bool_interpretation_def,is_std_interpretation_def,is_std_type_assignment_def] >>
fs[interprets_nil,type_ok_def,FLOOKUP_UPDATE] >>
fs[]
)
*)
val good_select_extend_base_select = store_thm("good_select_extend_base_select",
``∀ina. wf_to_inner ina ⇒
∀s. good_select s ⇒
good_select ((range ina =+ (λp. ina (@x. p (ina x)))) s)``,
rw[good_select_def,APPLY_UPDATE_THM] >> rw[] >>
TRY (
SELECT_ELIM_TAC >> simp[] >>
qexists_tac`finv ina x` >>
metis_tac[wf_to_inner_finv_right] ) >>
metis_tac[wf_to_inner_range_thm])
val select_instance_thm = prove(
``is_set_theory ^mem ⇒
is_select_sig ^signatur ⇒
good_select select_fun ⇒
(select_fun (range inty) = λp. inty (@x. p (inty x))) ⇒
(typesem (tyaof (select_model select_fun)) ^tyval ty = range inty) ⇒
wf_to_inner inty
⇒
(instance ^tmsig (select_model select_fun) (strlit "@") (Fun (Fun ty Bool) ty) ^tyval =
fun_to_inner (fun_to_inner inty bool_to_inner) inty $@)``,
rw[is_select_sig_def] >>
qspecl_then[`tmsig`,`select_model select_fun`,`strlit"@"`]mp_tac instance_def >>
simp[] >>