-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpure_limitScript.sml
255 lines (229 loc) · 6.67 KB
/
pure_limitScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
open HolKernel Parse boolLib bossLib term_tactic;
open arithmeticTheory listTheory optionTheory pairTheory;
open pure_valueTheory;
val _ = new_theory "pure_limit";
(*
limit (div,div,div,div,div,...) d = div
limit (div,div,div,div,div,4,4,4,4,4,4,4,4,4,4,4,4,...) d = 4
limit (1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,...) d = d
limit is used to define eval in terms of ‘∀ k . eval_to k’
eval_to is deterministic, hence, we wouldn't need "d" in
limit (k -> v) d. But is convenient for the proofs.
*)
Definition limit_def:
limit (f:num->'a) default =
(* if there is a value x that forever repeats from some
index k onwards in sequence f, then return that x;
in the other case we return the default value *)
case (some x. ∃k. ∀n. k ≤ n ⇒ f n = x) of
| SOME x => x
| NONE => default
End
(*
v_seq: num -> v
given a certain path, v_limit tries to look into a value with k any num.
*)
Definition v_limit_def:
v_limit v_seq path =
limit (λk. v_lookup path (v_seq k)) (Error', 0)
End
(**** LEMMAS for limit/v_limit algebra *****)
Theorem limit_const[simp]:
limit (λk. x) d = x
Proof
fs [limit_def]
\\ DEEP_INTRO_TAC some_intro \\ rw []
THEN1 (first_x_assum (qspec_then ‘k’ mp_tac) \\ fs [])
\\ first_x_assum (qspec_then ‘x’ mp_tac) \\ fs []
QED
Theorem limit_eq_add:
∀k p x f.
limit (λn. f (n + k)) p = x ⇒
limit f p = x
Proof
rw [limit_def]
\\ DEEP_INTRO_TAC some_intro \\ rw []
\\ DEEP_INTRO_TAC some_intro \\ rw []
THEN1
(first_x_assum (qspec_then ‘k'+k''’ mp_tac)
\\ first_x_assum (qspec_then ‘k+k'+k''’ mp_tac)
\\ fs [])
THEN1
(first_x_assum (qspecl_then [‘f (k+k')’,‘k'’] strip_assume_tac)
\\ first_assum (qspecl_then [‘k+k'’] strip_assume_tac) \\ fs []
\\ first_x_assum (qspecl_then [‘n+k’] strip_assume_tac)
\\ rfs [] \\ rw [] \\ fs [])
THEN1
(last_x_assum (qspecl_then [‘x’,‘k+k'’] strip_assume_tac)
\\ first_x_assum (qspecl_then [‘n-k’] strip_assume_tac) \\ fs []
\\ rfs [])
QED
Theorem limit_eq_add_rewrite:
∀k p f.
limit (λn. f (n + k)) p = limit f p
Proof
rw[] >>
irule (GSYM limit_eq_add) >>
qexists_tac `k` >> fs[]
QED
Theorem limit_if:
∀x y d. limit (λk. if k = 0 then x else y (k − 1)) d = limit y d
Proof
rw [] \\ match_mp_tac limit_eq_add
\\ qexists_tac ‘1’ \\ fs []
\\ CONV_TAC (DEPTH_CONV ETA_CONV) \\ fs []
QED
Theorem v_limit_eq_add:
∀k p x f.
v_limit (λn. f (n + k)) p = x ⇒
v_limit f p = x
Proof
rw [v_limit_def,FUN_EQ_THM]
\\ match_mp_tac limit_eq_add
\\ qexists_tac ‘k’ \\ fs []
QED
Theorem v_limit_if:
v_limit (λk. if k = 0 then a else b (k − 1)) = v_limit b
Proof
rw [v_limit_def,FUN_EQ_THM]
\\ qspecl_then [‘v_lookup x a’,‘λk. v_lookup x (b k)’,‘(Error',0)’] mp_tac
(GSYM limit_if)
\\ fs [] \\ rw [] \\ AP_THM_TAC \\ AP_TERM_TAC
\\ fs [FUN_EQ_THM] \\ rw []
QED
Theorem v_limit_exists:
∀ f r m path.
(∃k. ∀n. k ≤ n ⇒ v_lookup path (f n) = (r,m))
⇒ v_limit f path = (r,m)
Proof
rw [] >> fs[v_limit_def,limit_def] >> rename1 `k1 ≤ _` >>
DEEP_INTRO_TAC some_intro >> rw [v_lookup]
>- (
rename1 `k2 ≤ _` >>
rpt (first_x_assum (qspec_then `k1 + k2` assume_tac)) >> fs[] >>
Cases_on `f (k1 + k2)` >> fs[v_lookup]
)
>> (
first_x_assum (qspecl_then [`(r,m)`,`k1`] assume_tac) >> fs[] >>
rename1 `_ ≤ k2` >>
first_x_assum drule >>
Cases_on `f k2` >> fs[v_lookup]
)
QED
Theorem v_limit_not_Error:
v_limit f path = (r,l) ∧ r ≠ Error' ⇒
∃k. ∀n. k ≤ n ⇒ v_lookup path (f n) = (r,l)
Proof
fs [v_limit_def,limit_def]
\\ DEEP_INTRO_TAC some_intro \\ rw [v_lookup_def]
\\ metis_tac []
QED
Theorem v_limit_eqn:
∀ f path res.
v_limit f path = res ⇔
(∃k. ∀n. k ≤ n ⇒ v_lookup path (f n) = res) ∨
(res = (Error',0) ∧ ∀ r k. ∃n. k ≤ n ∧ v_lookup path (f n) ≠ r)
Proof
rw[v_limit_def, limit_def] >>
DEEP_INTRO_TAC some_intro >> rw[] >> eq_tac >> rw[]
>- (DISJ1_TAC >> goal_assum drule)
>- (
rename1 `k1 ≤ _` >>
rpt (first_x_assum (qspec_then `k + k1` assume_tac)) >>
gvs[]
)
>- (
first_x_assum (qspecl_then [`x`,`k`] assume_tac) >> fs[] >>
first_x_assum drule >> gvs[]
)
>- (
first_x_assum (qspecl_then [`res`,`k`] assume_tac) >> fs[] >>
first_x_assum drule >> gvs[]
)
QED
Theorem limit_not_default:
limit f d = x ∧ x ≠ d ⇒ ∃k. ∀n. k ≤ n ⇒ f n = x
Proof
fs [limit_def]
\\ DEEP_INTRO_TAC some_intro \\ rw []
\\ qexists_tac ‘k’ \\ fs []
QED
Theorem limit_eq_imp:
limit f d = x ∧ (∀n. k ≤ n ⇒ f n = y) ⇒ x = y
Proof
rw [] \\ fs [limit_def]
\\ DEEP_INTRO_TAC some_intro \\ rw []
THEN1 (rpt (first_x_assum (qspec_then ‘k+k'’ mp_tac)) \\ fs [])
\\ first_x_assum (qspecl_then [‘y’,‘k’] mp_tac) \\ rw []
\\ res_tac
QED
Theorem limit_intro:
∀ f d x. (∃k. ∀n. k ≤ n ⇒ f n = x) ⇒ limit f d = x
Proof
rw[limit_def] >>
DEEP_INTRO_TAC some_intro >> rw[]
>- (
first_x_assum (qspec_then `k + k'` assume_tac) >>
first_x_assum (qspec_then `k + k'` assume_tac) >>
fs[]
)
>- (
first_x_assum (qspecl_then [`x`,`k`] assume_tac) >> fs[] >>
first_x_assum drule >>
fs[]
)
QED
Theorem limit_intro_alt:
∀ f d x lim . limit f d = lim ∧ (∃k. ∀n. k ≤ n ⇒ f n = x) ⇒ lim = x
Proof
rw[] >> irule limit_intro >>
goal_assum drule
QED
Theorem limit_eq_IMP:
∀ f g d.
(∃k. ∀n. k ≤ n ⇒ f n = g n)
⇒ limit f d = limit g d
Proof
rw[limit_def] >>
DEEP_INTRO_TAC some_intro >> rw[]
>- (
rename1 `k1 ≤ _` >>
DEEP_INTRO_TAC some_intro >> rw[]
>- (
rename1 `k2 ≤ _` >>
rpt (first_x_assum (qspec_then `k + k1 + k2` assume_tac)) >> gvs[]
)
>- (
first_x_assum (qspecl_then [`x`,`k + k1`] assume_tac) >> fs[] >>
rename1 `_ ≤ k3` >>
rpt (first_x_assum (qspec_then `k3` assume_tac)) >> gvs[]
)
)
>- (
DEEP_INTRO_TAC some_intro >> rw[] >> rename1 `k1 ≤ _` >>
first_x_assum (qspecl_then [`x`,`k + k1`] assume_tac) >> fs[] >>
rename1 `_ ≤ k2` >>
rpt (first_x_assum (qspec_then `k2` assume_tac)) >> gvs[]
)
QED
Theorem limit_eq_add_IMP:
∀ f g c d.
(∃k. ∀n. k ≤ n ⇒ f (n + c) = g n)
⇒ limit f d = limit g d
Proof
rw[] >>
qspecl_then [`c`,`d`,`f`] assume_tac (GSYM limit_eq_add_rewrite) >> fs[] >>
irule limit_eq_IMP >> fs[] >>
goal_assum drule
QED
Theorem v_limit_eq_IMP:
∀ f g path.
(∃k. ∀n. k ≤ n ⇒ v_lookup path (f n) = v_lookup path (g n))
⇒ v_limit f path = v_limit g path
Proof
rw[v_limit_def] >>
irule limit_eq_IMP >>
qexists_tac `k` >>
fs[]
QED
val _ = export_theory();