|
| 1 | +from types import SimpleNamespace |
| 2 | +from monai import transforms as mt |
| 3 | + |
| 4 | +cfg = SimpleNamespace(**{}) |
| 5 | + |
| 6 | +# stages |
| 7 | +cfg.train = True |
| 8 | +cfg.val = True |
| 9 | +cfg.test = True |
| 10 | +cfg.train_val = True |
| 11 | + |
| 12 | +# dataset |
| 13 | +cfg.batch_size_val = None |
| 14 | +cfg.use_custom_batch_sampler = False |
| 15 | +cfg.val_df = None |
| 16 | +cfg.test_df = None |
| 17 | +cfg.val_data_folder = None |
| 18 | +cfg.train_aug = None |
| 19 | +cfg.val_aug = None |
| 20 | +cfg.data_sample = -1 |
| 21 | + |
| 22 | +# model |
| 23 | + |
| 24 | +cfg.pretrained = False |
| 25 | +cfg.pretrained_weights = None |
| 26 | +cfg.pretrained_weights_strict = True |
| 27 | +cfg.pop_weights = None |
| 28 | +cfg.compile_model = False |
| 29 | + |
| 30 | +# training routine |
| 31 | +cfg.fold = 0 |
| 32 | +cfg.optimizer = "Adam" |
| 33 | +cfg.sgd_momentum = 0 |
| 34 | +cfg.sgd_nesterov = False |
| 35 | +cfg.lr = 1e-4 |
| 36 | +cfg.schedule = "cosine" |
| 37 | +cfg.num_cycles = 0.5 |
| 38 | +cfg.weight_decay = 0 |
| 39 | +cfg.epochs = 10 |
| 40 | +cfg.seed = -1 |
| 41 | +cfg.resume_training = False |
| 42 | +cfg.distributed = False |
| 43 | +cfg.clip_grad = 0 |
| 44 | +cfg.save_val_data = True |
| 45 | +cfg.gradient_checkpointing = False |
| 46 | +cfg.apex_ddp = False |
| 47 | +cfg.synchronize_step = True |
| 48 | + |
| 49 | +# eval |
| 50 | +cfg.eval_ddp = True |
| 51 | +cfg.calc_metric = True |
| 52 | +cfg.calc_metric_epochs = 1 |
| 53 | +cfg.eval_steps = 0 |
| 54 | +cfg.eval_epochs = 1 |
| 55 | +cfg.save_pp_csv = True |
| 56 | + |
| 57 | + |
| 58 | +# ressources |
| 59 | +cfg.find_unused_parameters = False |
| 60 | +cfg.grad_accumulation = 1 |
| 61 | +cfg.syncbn = False |
| 62 | +cfg.gpu = 0 |
| 63 | +cfg.dp = False |
| 64 | +cfg.num_workers = 8 |
| 65 | +cfg.drop_last = True |
| 66 | +cfg.save_checkpoint = True |
| 67 | +cfg.save_only_last_ckpt = False |
| 68 | +cfg.save_weights_only = False |
| 69 | + |
| 70 | +# logging, |
| 71 | +cfg.neptune_project = None |
| 72 | +cfg.neptune_connection_mode = "debug" |
| 73 | +cfg.save_first_batch = False |
| 74 | +cfg.save_first_batch_preds = False |
| 75 | +cfg.clip_mode = "norm" |
| 76 | +cfg.data_sample = -1 |
| 77 | +cfg.track_grad_norm = True |
| 78 | +cfg.grad_norm_type = 2. |
| 79 | +cfg.track_weight_norm = True |
| 80 | +cfg.norm_eps = 1e-4 |
| 81 | +cfg.disable_tqdm = False |
| 82 | + |
| 83 | + |
| 84 | + |
| 85 | + |
| 86 | +# paths |
| 87 | + |
| 88 | +cfg.data_folder = '/mount/cryo/data/czii-cryo-et-object-identification/train/static/ExperimentRuns/' |
| 89 | +cfg.train_df = 'train_folded_v1.csv' |
| 90 | + |
| 91 | + |
| 92 | +# stages |
| 93 | +cfg.test = False |
| 94 | +cfg.train = True |
| 95 | +cfg.train_val = False |
| 96 | + |
| 97 | +#logging |
| 98 | +cfg.neptune_project = None |
| 99 | +cfg.neptune_connection_mode = "async" |
| 100 | + |
| 101 | +#model |
| 102 | +cfg.model = "mdl_1" |
| 103 | +cfg.mixup_p = 1. |
| 104 | +cfg.mixup_beta = 1. |
| 105 | +cfg.in_channels = 1 |
| 106 | +cfg.pretrained = False |
| 107 | + |
| 108 | +#data |
| 109 | +cfg.dataset = "ds_1" |
| 110 | +cfg.classes = ['apo-ferritin','beta-amylase','beta-galactosidase','ribosome','thyroglobulin','virus-like-particle'] |
| 111 | +cfg.n_classes = len(cfg.classes) |
| 112 | + |
| 113 | +cfg.post_process_pipeline = 'pp_1' |
| 114 | +cfg.metric = 'metric_1' |
| 115 | + |
| 116 | + |
| 117 | + |
| 118 | +cfg.particle_radi = {'apo-ferritin':60, |
| 119 | + 'beta-amylase':65, |
| 120 | + 'beta-galactosidase':90, |
| 121 | + 'ribosome':150, |
| 122 | + 'thyroglobulin':130, |
| 123 | + 'virus-like-particle':135 |
| 124 | + } |
| 125 | + |
| 126 | +cfg.voxel_spacing = 10.0 |
| 127 | + |
| 128 | + |
| 129 | +# OPTIMIZATION & SCHEDULE |
| 130 | + |
| 131 | +cfg.fold = 0 |
| 132 | +cfg.epochs = 10 |
| 133 | + |
| 134 | +cfg.lr = 1e-3 |
| 135 | +cfg.optimizer = "Adam" |
| 136 | +cfg.weight_decay = 0. |
| 137 | +cfg.warmup = 0. |
| 138 | +cfg.batch_size = 8 |
| 139 | +cfg.batch_size_val = 16 |
| 140 | +cfg.sub_batch_size = 4 |
| 141 | +cfg.roi_size = [96,96,96] |
| 142 | +cfg.train_sub_epochs = 1112 |
| 143 | +cfg.val_sub_epochs = 1 |
| 144 | +cfg.mixed_precision = False |
| 145 | +cfg.bf16 = True |
| 146 | +cfg.force_fp16 = True |
| 147 | +cfg.pin_memory = False |
| 148 | +cfg.grad_accumulation = 1. |
| 149 | +cfg.num_workers = 8 |
| 150 | + |
| 151 | + |
| 152 | + |
| 153 | + |
| 154 | + |
| 155 | + |
| 156 | +#Saving |
| 157 | +cfg.save_weights_only = True |
| 158 | +cfg.save_only_last_ckpt = False |
| 159 | +cfg.save_val_data = False |
| 160 | +cfg.save_checkpoint=True |
| 161 | +cfg.save_pp_csv = False |
| 162 | + |
| 163 | + |
| 164 | + |
| 165 | +cfg.static_transforms = static_transforms = mt.Compose([mt.EnsureChannelFirstd(keys=["image"], channel_dim="no_channel"),mt.NormalizeIntensityd(keys="image"),]) |
| 166 | +cfg.train_aug = mt.Compose([mt.RandSpatialCropSamplesd(keys=["image", "label"], |
| 167 | + roi_size=cfg.roi_size, |
| 168 | + num_samples=cfg.sub_batch_size), |
| 169 | + mt.RandFlipd( |
| 170 | + keys=["image", "label"], |
| 171 | + prob=0.5, |
| 172 | + spatial_axis=0, |
| 173 | + ), |
| 174 | + mt.RandFlipd( |
| 175 | + keys=["image", "label"], |
| 176 | + prob=0.5, |
| 177 | + spatial_axis=1, |
| 178 | + ), |
| 179 | + mt.RandFlipd( |
| 180 | + keys=["image", "label"], |
| 181 | + prob=0.5, |
| 182 | + spatial_axis=2, |
| 183 | + ), |
| 184 | + mt.RandRotate90d( |
| 185 | + keys=["image", "label"], |
| 186 | + prob=0.75, |
| 187 | + max_k=3, |
| 188 | + spatial_axes=(0, 1), |
| 189 | + ), |
| 190 | + mt.RandRotated(keys=["image", "label"], prob=0.5,range_x=0.78,range_y=0.,range_z=0., padding_mode='reflection') |
| 191 | + |
| 192 | + ]) |
| 193 | + |
| 194 | +cfg.val_aug = mt.Compose([mt.GridPatchd(keys=["image","label"],patch_size=cfg.roi_size, pad_mode='reflect')]) |
| 195 | + |
| 196 | + |
| 197 | + |
| 198 | +basic_cfg = cfg |
0 commit comments