-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtune.py
414 lines (331 loc) · 17.1 KB
/
tune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import Mapping, Optional, cast
import httpx
from .jobs import (
JobsResource,
AsyncJobsResource,
JobsResourceWithRawResponse,
AsyncJobsResourceWithRawResponse,
JobsResourceWithStreamingResponse,
AsyncJobsResourceWithStreamingResponse,
)
from .models import (
ModelsResource,
AsyncModelsResource,
ModelsResourceWithRawResponse,
AsyncModelsResourceWithRawResponse,
ModelsResourceWithStreamingResponse,
AsyncModelsResourceWithStreamingResponse,
)
from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes
from ...._utils import (
extract_files,
maybe_transform,
deepcopy_minimal,
async_maybe_transform,
)
from ...._compat import cached_property
from ...._resource import SyncAPIResource, AsyncAPIResource
from ...._response import (
to_raw_response_wrapper,
to_streamed_response_wrapper,
async_to_raw_response_wrapper,
async_to_streamed_response_wrapper,
)
from ...._base_client import make_request_options
from ....types.agents import tune_create_params
from ....types.agents.create_tune_response import CreateTuneResponse
__all__ = ["TuneResource", "AsyncTuneResource"]
class TuneResource(SyncAPIResource):
@cached_property
def jobs(self) -> JobsResource:
return JobsResource(self._client)
@cached_property
def models(self) -> ModelsResource:
return ModelsResource(self._client)
@cached_property
def with_raw_response(self) -> TuneResourceWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return
the raw response object instead of the parsed content.
For more information, see https://www.github.com/ContextualAI/contextual-client-python#accessing-raw-response-data-eg-headers
"""
return TuneResourceWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> TuneResourceWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/ContextualAI/contextual-client-python#with_streaming_response
"""
return TuneResourceWithStreamingResponse(self)
def create(
self,
agent_id: str,
*,
test_dataset_name: Optional[str] | NotGiven = NOT_GIVEN,
test_file: Optional[FileTypes] | NotGiven = NOT_GIVEN,
train_dataset_name: Optional[str] | NotGiven = NOT_GIVEN,
training_file: Optional[FileTypes] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> CreateTuneResponse:
"""
Create a tuning job for the specified `Agent` to specialize it to your specific
domain or use case.
This API initiates an asynchronous tuning task. You can provide the required
data through one of two ways:
- Provide a `training_file` and an optional `test_file`. If no `test_file` is
provided, a portion of the `training_file` will be held out as the test set.
For easy reusability, the `training_file` is automatically saved as a `Tuning`
`Dataset`, and the `test_file` as an `Evaluation` `Dataset`. You can manage
them via the `/datasets/tune` and `/datasets/evaluation` endpoints.
- Provide a `Tuning` `Dataset` and an optional `Evaluation` `Dataset`. You can
create a `Tuning` `Dataset` and `Evaluation` `Dataset` using the
`/datasets/tune` and `/datasets/evaluation` endpoints respectively.
The API returns a tune job `id` which can be used to check on the status of your
tuning task through the `GET /tune/jobs/{job_id}/metadata` endpoint.
After the tuning job is complete, the metadata associated with the tune job will
include evaluation results and a model ID. You can then deploy the tuned model
to the agent by editing its config with the tuned model ID and the "Edit Agent"
API (i.e. the `PUT /agents/{agent_id}` API). To deactivate the tuned model, you
will need to edit the Agent's config again and set the `llm_model_id` field to
"default". For an end-to-end walkthrough, see the `Tune & Evaluation Guide`.
Args:
agent_id: ID of the Agent to list tuning jobs for
test_dataset_name: Optional. `Dataset` to use for testing model checkpoints, created through the
`/datasets/evaluate` API.
test_file: Optional. Local path to the test data file. The test file should follow the same
format as the training data file.
train_dataset_name: `Dataset` to use for training, created through the `/datasets/tune` API. Either
`train_dataset_name` or `training_file` must be provided, but not both.
training_file: Local path to the training data file.
The file should be in JSON array format, where each element of the array is a
JSON object represents a single training example. The four required fields are
`guideline`, `prompt`, `reference`, and `knowledge`.
- `knowledge` (`list[str]`): Retrieved knowledge used to generate the reference
answer. `knowledge` is a list of retrieved text chunks.
- `reference` (`str`): The gold-standard answer to the prompt.
- `guideline` (`str`): Guidelines for model output. If you do not have special
guidelines for the model's output, you can use the `System Prompt` defined in
your Agent configuration as the `guideline`.
- `prompt` (`str`): Question for the model to respond to.
Example:
```json
[
{
"guideline": "The answer should be accurate.",
"prompt": "What was last quarter's revenue?",
"reference": "According to recent reports, the Q3 revenue was $1.2 million, a 0.1 million increase from Q2.",
"knowledge": [
"Quarterly report: Q3 revenue was $1.2 million.",
"Quarterly report: Q2 revenue was $1.1 million.",
...
],
},
...
]
```
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not agent_id:
raise ValueError(f"Expected a non-empty value for `agent_id` but received {agent_id!r}")
body = deepcopy_minimal(
{
"test_dataset_name": test_dataset_name,
"test_file": test_file,
"train_dataset_name": train_dataset_name,
"training_file": training_file,
}
)
files = extract_files(cast(Mapping[str, object], body), paths=[["training_file"], ["test_file"]])
# It should be noted that the actual Content-Type header that will be
# sent to the server will contain a `boundary` parameter, e.g.
# multipart/form-data; boundary=---abc--
extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})}
return self._post(
f"/agents/{agent_id}/tune",
body=maybe_transform(body, tune_create_params.TuneCreateParams),
files=files,
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=CreateTuneResponse,
)
class AsyncTuneResource(AsyncAPIResource):
@cached_property
def jobs(self) -> AsyncJobsResource:
return AsyncJobsResource(self._client)
@cached_property
def models(self) -> AsyncModelsResource:
return AsyncModelsResource(self._client)
@cached_property
def with_raw_response(self) -> AsyncTuneResourceWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return
the raw response object instead of the parsed content.
For more information, see https://www.github.com/ContextualAI/contextual-client-python#accessing-raw-response-data-eg-headers
"""
return AsyncTuneResourceWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncTuneResourceWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/ContextualAI/contextual-client-python#with_streaming_response
"""
return AsyncTuneResourceWithStreamingResponse(self)
async def create(
self,
agent_id: str,
*,
test_dataset_name: Optional[str] | NotGiven = NOT_GIVEN,
test_file: Optional[FileTypes] | NotGiven = NOT_GIVEN,
train_dataset_name: Optional[str] | NotGiven = NOT_GIVEN,
training_file: Optional[FileTypes] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> CreateTuneResponse:
"""
Create a tuning job for the specified `Agent` to specialize it to your specific
domain or use case.
This API initiates an asynchronous tuning task. You can provide the required
data through one of two ways:
- Provide a `training_file` and an optional `test_file`. If no `test_file` is
provided, a portion of the `training_file` will be held out as the test set.
For easy reusability, the `training_file` is automatically saved as a `Tuning`
`Dataset`, and the `test_file` as an `Evaluation` `Dataset`. You can manage
them via the `/datasets/tune` and `/datasets/evaluation` endpoints.
- Provide a `Tuning` `Dataset` and an optional `Evaluation` `Dataset`. You can
create a `Tuning` `Dataset` and `Evaluation` `Dataset` using the
`/datasets/tune` and `/datasets/evaluation` endpoints respectively.
The API returns a tune job `id` which can be used to check on the status of your
tuning task through the `GET /tune/jobs/{job_id}/metadata` endpoint.
After the tuning job is complete, the metadata associated with the tune job will
include evaluation results and a model ID. You can then deploy the tuned model
to the agent by editing its config with the tuned model ID and the "Edit Agent"
API (i.e. the `PUT /agents/{agent_id}` API). To deactivate the tuned model, you
will need to edit the Agent's config again and set the `llm_model_id` field to
"default". For an end-to-end walkthrough, see the `Tune & Evaluation Guide`.
Args:
agent_id: ID of the Agent to list tuning jobs for
test_dataset_name: Optional. `Dataset` to use for testing model checkpoints, created through the
`/datasets/evaluate` API.
test_file: Optional. Local path to the test data file. The test file should follow the same
format as the training data file.
train_dataset_name: `Dataset` to use for training, created through the `/datasets/tune` API. Either
`train_dataset_name` or `training_file` must be provided, but not both.
training_file: Local path to the training data file.
The file should be in JSON array format, where each element of the array is a
JSON object represents a single training example. The four required fields are
`guideline`, `prompt`, `reference`, and `knowledge`.
- `knowledge` (`list[str]`): Retrieved knowledge used to generate the reference
answer. `knowledge` is a list of retrieved text chunks.
- `reference` (`str`): The gold-standard answer to the prompt.
- `guideline` (`str`): Guidelines for model output. If you do not have special
guidelines for the model's output, you can use the `System Prompt` defined in
your Agent configuration as the `guideline`.
- `prompt` (`str`): Question for the model to respond to.
Example:
```json
[
{
"guideline": "The answer should be accurate.",
"prompt": "What was last quarter's revenue?",
"reference": "According to recent reports, the Q3 revenue was $1.2 million, a 0.1 million increase from Q2.",
"knowledge": [
"Quarterly report: Q3 revenue was $1.2 million.",
"Quarterly report: Q2 revenue was $1.1 million.",
...
],
},
...
]
```
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
if not agent_id:
raise ValueError(f"Expected a non-empty value for `agent_id` but received {agent_id!r}")
body = deepcopy_minimal(
{
"test_dataset_name": test_dataset_name,
"test_file": test_file,
"train_dataset_name": train_dataset_name,
"training_file": training_file,
}
)
files = extract_files(cast(Mapping[str, object], body), paths=[["training_file"], ["test_file"]])
# It should be noted that the actual Content-Type header that will be
# sent to the server will contain a `boundary` parameter, e.g.
# multipart/form-data; boundary=---abc--
extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})}
return await self._post(
f"/agents/{agent_id}/tune",
body=await async_maybe_transform(body, tune_create_params.TuneCreateParams),
files=files,
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=CreateTuneResponse,
)
class TuneResourceWithRawResponse:
def __init__(self, tune: TuneResource) -> None:
self._tune = tune
self.create = to_raw_response_wrapper(
tune.create,
)
@cached_property
def jobs(self) -> JobsResourceWithRawResponse:
return JobsResourceWithRawResponse(self._tune.jobs)
@cached_property
def models(self) -> ModelsResourceWithRawResponse:
return ModelsResourceWithRawResponse(self._tune.models)
class AsyncTuneResourceWithRawResponse:
def __init__(self, tune: AsyncTuneResource) -> None:
self._tune = tune
self.create = async_to_raw_response_wrapper(
tune.create,
)
@cached_property
def jobs(self) -> AsyncJobsResourceWithRawResponse:
return AsyncJobsResourceWithRawResponse(self._tune.jobs)
@cached_property
def models(self) -> AsyncModelsResourceWithRawResponse:
return AsyncModelsResourceWithRawResponse(self._tune.models)
class TuneResourceWithStreamingResponse:
def __init__(self, tune: TuneResource) -> None:
self._tune = tune
self.create = to_streamed_response_wrapper(
tune.create,
)
@cached_property
def jobs(self) -> JobsResourceWithStreamingResponse:
return JobsResourceWithStreamingResponse(self._tune.jobs)
@cached_property
def models(self) -> ModelsResourceWithStreamingResponse:
return ModelsResourceWithStreamingResponse(self._tune.models)
class AsyncTuneResourceWithStreamingResponse:
def __init__(self, tune: AsyncTuneResource) -> None:
self._tune = tune
self.create = async_to_streamed_response_wrapper(
tune.create,
)
@cached_property
def jobs(self) -> AsyncJobsResourceWithStreamingResponse:
return AsyncJobsResourceWithStreamingResponse(self._tune.jobs)
@cached_property
def models(self) -> AsyncModelsResourceWithStreamingResponse:
return AsyncModelsResourceWithStreamingResponse(self._tune.models)