-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrerank.py
262 lines (211 loc) · 10.6 KB
/
rerank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import List
import httpx
from ..types import rerank_create_params
from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from .._utils import (
maybe_transform,
async_maybe_transform,
)
from .._compat import cached_property
from .._resource import SyncAPIResource, AsyncAPIResource
from .._response import (
to_raw_response_wrapper,
to_streamed_response_wrapper,
async_to_raw_response_wrapper,
async_to_streamed_response_wrapper,
)
from .._base_client import make_request_options
from ..types.rerank_create_response import RerankCreateResponse
__all__ = ["RerankResource", "AsyncRerankResource"]
class RerankResource(SyncAPIResource):
@cached_property
def with_raw_response(self) -> RerankResourceWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return
the raw response object instead of the parsed content.
For more information, see https://www.github.com/ContextualAI/contextual-client-python#accessing-raw-response-data-eg-headers
"""
return RerankResourceWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> RerankResourceWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/ContextualAI/contextual-client-python#with_streaming_response
"""
return RerankResourceWithStreamingResponse(self)
def create(
self,
*,
documents: List[str],
model: str,
query: str,
instruction: str | NotGiven = NOT_GIVEN,
metadata: List[str] | NotGiven = NOT_GIVEN,
top_n: int | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> RerankCreateResponse:
"""
Rank a list of documents according to their relevance to a query and your custom
instructions about how to prioritize retrievals. We evaluated the model on
instructions for recency, document type, source, and metadata, and it can
generalize to other instructions as well.
The total request cannot exceed 400,000 tokens. The combined length of the
query, instruction and any document with its metadata must not exceed 8,000
tokens. Email
[[email protected]](mailto:[email protected]) with any
feedback or questions.
Args:
documents: The texts to be reranked according to their relevance to the query and the
optional instruction
model: The version of the reranker to use. Currently, we just have
"ctxl-rerank-en-v1-instruct".
query: The string against which documents will be ranked for relevance
instruction: Instructions that the reranker references when ranking retrievals. We evaluated
the model on instructions for recency, document type, source, and metadata, and
it can generalize to other instructions as well. Note that we do not guarantee
that the reranker will follow these instructions exactly. Examples: "Prioritize
internal sales documents over market analysis reports. More recent documents
should be weighted higher. Enterprise portal content supersedes distributor
communications." and "Emphasize forecasts from top-tier investment banks. Recent
analysis should take precedence. Disregard aggregator sites and favor detailed
research notes over news summaries."
metadata: Metadata for documents being passed to the reranker. Must be the same length as
the documents list. If a document does not have metadata, add an empty string.
top_n: The number of top-ranked results to return
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return self._post(
"/rerank",
body=maybe_transform(
{
"documents": documents,
"model": model,
"query": query,
"instruction": instruction,
"metadata": metadata,
"top_n": top_n,
},
rerank_create_params.RerankCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=RerankCreateResponse,
)
class AsyncRerankResource(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncRerankResourceWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return
the raw response object instead of the parsed content.
For more information, see https://www.github.com/ContextualAI/contextual-client-python#accessing-raw-response-data-eg-headers
"""
return AsyncRerankResourceWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncRerankResourceWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/ContextualAI/contextual-client-python#with_streaming_response
"""
return AsyncRerankResourceWithStreamingResponse(self)
async def create(
self,
*,
documents: List[str],
model: str,
query: str,
instruction: str | NotGiven = NOT_GIVEN,
metadata: List[str] | NotGiven = NOT_GIVEN,
top_n: int | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> RerankCreateResponse:
"""
Rank a list of documents according to their relevance to a query and your custom
instructions about how to prioritize retrievals. We evaluated the model on
instructions for recency, document type, source, and metadata, and it can
generalize to other instructions as well.
The total request cannot exceed 400,000 tokens. The combined length of the
query, instruction and any document with its metadata must not exceed 8,000
tokens. Email
[[email protected]](mailto:[email protected]) with any
feedback or questions.
Args:
documents: The texts to be reranked according to their relevance to the query and the
optional instruction
model: The version of the reranker to use. Currently, we just have
"ctxl-rerank-en-v1-instruct".
query: The string against which documents will be ranked for relevance
instruction: Instructions that the reranker references when ranking retrievals. We evaluated
the model on instructions for recency, document type, source, and metadata, and
it can generalize to other instructions as well. Note that we do not guarantee
that the reranker will follow these instructions exactly. Examples: "Prioritize
internal sales documents over market analysis reports. More recent documents
should be weighted higher. Enterprise portal content supersedes distributor
communications." and "Emphasize forecasts from top-tier investment banks. Recent
analysis should take precedence. Disregard aggregator sites and favor detailed
research notes over news summaries."
metadata: Metadata for documents being passed to the reranker. Must be the same length as
the documents list. If a document does not have metadata, add an empty string.
top_n: The number of top-ranked results to return
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
return await self._post(
"/rerank",
body=await async_maybe_transform(
{
"documents": documents,
"model": model,
"query": query,
"instruction": instruction,
"metadata": metadata,
"top_n": top_n,
},
rerank_create_params.RerankCreateParams,
),
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=RerankCreateResponse,
)
class RerankResourceWithRawResponse:
def __init__(self, rerank: RerankResource) -> None:
self._rerank = rerank
self.create = to_raw_response_wrapper(
rerank.create,
)
class AsyncRerankResourceWithRawResponse:
def __init__(self, rerank: AsyncRerankResource) -> None:
self._rerank = rerank
self.create = async_to_raw_response_wrapper(
rerank.create,
)
class RerankResourceWithStreamingResponse:
def __init__(self, rerank: RerankResource) -> None:
self._rerank = rerank
self.create = to_streamed_response_wrapper(
rerank.create,
)
class AsyncRerankResourceWithStreamingResponse:
def __init__(self, rerank: AsyncRerankResource) -> None:
self._rerank = rerank
self.create = async_to_streamed_response_wrapper(
rerank.create,
)