-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdatasets.py
287 lines (210 loc) · 10.8 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
import tensorflow as tf
import numpy as np
import pandas as pd
import preprocess as pr
from sklearn import preprocessing
from copy import deepcopy
from sklearn.preprocessing import StandardScaler
import json
def _to_tf(X,Y, batchsize):
_dataset = tf.data.Dataset.from_tensor_slices((X, Y))
_dataset = _dataset.cache().shuffle(100000, reshuffle_each_iteration=True).batch(batchsize, drop_remainder=True).prefetch(tf.data.AUTOTUNE)
return _dataset
def get_tf_database(data, target, batchsize):
return _to_tf(data, target , batchsize)
def _get_data_config():
with open('dataset_configuration.json', 'r') as file:
data = file.read()
return json.loads(data)
def split_numerical_and_categorical_columns(ds, filtered_header):
dataset_config = _get_data_config()
numeric_header = [i for i in filtered_header if i not in dataset_config[ds]["cat_cols"]]
# must do the loop to keep the order
categorical_header = [i for i in filtered_header if i in dataset_config[ds]["cat_cols"]]
return numeric_header, categorical_header
def _normalize_by_min_max(df, min_x, max_x):
norm = (max_x - min_x) + 1e-10 #only breaks if MAX = MIN, so we need some noise
normalized_data = pd.DataFrame(tf.where(min_x < 0, (df + min_x) / norm, (df - min_x) / norm).numpy(), columns = df.columns)
return normalized_data
def _normalize_by_mean(df, scaler):
return pd.DataFrame(scaler.transform(df), columns = df.columns)
def _fit_mean_scaler(df, scaler):
normalized_data = scaler.fit_transform(df)
return pd.DataFrame(normalized_data, columns = df.columns), scaler
def _get_train_val_and_test(df, target, n_train_instances, n_test_instances):
train, val, test = np.split(df.sample(frac=1), #shuffle
[int(.70*len(df)), int(.80*len(df))])
X_train = train.to_numpy(dtype=np.float32)[:n_train_instances]#, df.columns != target ]
X_val = val.to_numpy(dtype=np.float32)#[:, df.columns != target]
X_test = test.to_numpy(dtype=np.float32)[:n_test_instances]#, df.columns != target]
#must add a newaxis (empty)
y_train = train.to_numpy(dtype=np.float32)[:n_train_instances, df.columns == target, np.newaxis]
y_val = val.to_numpy(dtype=np.float32)[:,df.columns == target, np.newaxis]
y_test = test.to_numpy(dtype=np.float32)[:n_test_instances,df.columns == target, np.newaxis]
return X_train, y_train, X_test, y_test, X_val, y_val
def _replace_nan(df, missing):
df = df.replace('N/A', missing)
df = df.replace('', missing)
df = df.replace(' ', missing)
df = df.replace('NaN', missing)
df = df.fillna(missing)
return df
def load_regression(ds, n_train_instances, n_test_instances, normalize_y = False, normalize_sklearn = True, path_to_dataset = "DATASETS_REIN"):
scaler = StandardScaler()
dataset_config = _get_data_config()
clean_dir = f"{path_to_dataset}/{ds}/"
df = pd.read_csv(os.path.join(clean_dir, 'clean.csv'))
df, CAT_ENCODER = pr.preprocess(df,
dataset_config[ds]["date_cols"],
dataset_config[ds]["id_cols"],
dataset_config[ds]["cat_cols"])
print("Unique Values per column:\n ", df.nunique())
#drop rows that contains empty cells
df.dropna(inplace = True)
MIN = np.min(df,axis=0)
MAX = np.max(df,axis=0)
#non-normalized copy
target = dataset_config[ds]['target']
y_ = df[target].copy()
if normalize_sklearn:
df, scaler = _fit_mean_scaler(df, scaler)
else:
df = _normalize_by_min_max(df, MIN, MAX)
# when all values of the column are equal it divides by zero and return NaN, so we need to replace by 0.0!!!
df = df.fillna(0.0)
if not normalize_y:
df[target] = y_
X_train, y_train, X_test, y_test, X_val, y_val = _get_train_val_and_test(df, target, n_train_instances, n_test_instances)
return X_train, y_train, X_test, y_test, MAX, MIN, scaler, CAT_ENCODER
def load_regression_dirty(ds, n_train_instances, n_test_instances, missing, scaler, CAT_ENCODER, normalize_y = False, MAX = None, MIN = None, normalize_sklearn = True):
dataset_config = _get_data_config()
clean_dir = f"DATASETS_REIN/{ds}/"
df = pd.read_csv(os.path.join(clean_dir, 'dirty01.csv'))
df = _replace_nan(df, missing)
#drop rows that still contains empty cells
df,_ = pr.preprocess(df,
dataset_config[ds]["date_cols"],
dataset_config[ds]["id_cols"],
dataset_config[ds]["cat_cols"],
les = CAT_ENCODER)
#non-normalized copy
target = dataset_config[ds]['target']
y_ = df[target].copy()
if normalize_sklearn:
df = _normalize_by_mean(df, scaler)
elif MAX is not None:
df = _normalize_by_min_max(df, MIN, MAX)
else:
df = _normalize_by_min_max(df, np.min(df,axis=0), np.max(df,axis=0))
# For min/max normalization, when all values of the column are equal it divides by zero and return NaN,
#so we need to replace by 0.0!!!
df = df.fillna(0.0)
print(np.min(df,axis=0), "\n", np.max(df,axis=0))
if not normalize_y:
df[target] = y_
X_train, y_train, X_test, y_test, X_val, y_val = _get_train_val_and_test(df, target, n_train_instances, n_test_instances)
return X_train, y_train, X_test, y_test
def load_features_and_data(ds, n_instances, n_test_instances, missing, scaler, CAT_ENCODER, normalize_y = False, MAX = None, MIN = None, normalize_sklearn = True, path_to_dataset = "DATASETS_REIN"):
dataset_config = _get_data_config()
clean_dir = f"{path_to_dataset}/{ds}/"
df = pd.read_csv(os.path.join(clean_dir, 'dirty01.csv')) [0:n_instances]
df_clean = pd.read_csv(os.path.join(clean_dir, 'clean.csv')) [0:n_instances]
numeric_header = df_clean.select_dtypes(include="number").columns
categorical_header = df_clean.select_dtypes(exclude="number").columns
#check if it is not a timestamp
for dtcol in dataset_config[ds]["date_cols"]:
if dtcol not in numeric_header :
#remove date columns from the categorical set
categorical_header = categorical_header.drop(dtcol)
#save the full version for CSV write
FULL = deepcopy(df)
df, _ = pr.preprocess(df,
dataset_config[ds]["date_cols"],
dataset_config[ds]["id_cols"],
dataset_config[ds]["cat_cols"],
les = CAT_ENCODER)
df_clean, _ = pr.preprocess(df_clean,
dataset_config[ds]["date_cols"],
dataset_config[ds]["id_cols"],
dataset_config[ds]["cat_cols"],
les = CAT_ENCODER,
drop_columns = False)
# #FIT THE SCALER FOR ALL COLUMNS##############################
sc = StandardScaler()
_, full_scaler = _fit_mean_scaler(df_clean, sc)
# #################################################################
FULL, _ = pr.preprocess(FULL,
dataset_config[ds]["date_cols"],
dataset_config[ds]["id_cols"],
dataset_config[ds]["cat_cols"],
les = CAT_ENCODER,
drop_columns = False)
header = df.columns.tolist()
full_header = df_clean.columns.tolist()
#non-normalized copy
target = dataset_config[ds]['target']
y_ = df[target].copy()
#Normalize
if normalize_sklearn:
df = _normalize_by_mean(df, scaler)
df_clean = _normalize_by_mean(df_clean, full_scaler)
FULL = _normalize_by_mean(FULL, full_scaler)
df_dirty = deepcopy(FULL)
#replace NaNs as in REIN
df_dirty = pd.DataFrame(np.nan_to_num(df_dirty), columns = df_dirty.columns)
FULL = pd.DataFrame(np.nan_to_num(FULL), columns = FULL.columns)
df_clean = pd.DataFrame(np.nan_to_num(df_clean), columns = df_clean.columns)
df_dirty = df_dirty.where(df_dirty >= -float(missing), float(missing))
df_dirty = df_dirty.where(df_dirty <= float(missing), float(missing))
if not normalize_y:
df[target] = y_
data_no_target = df.drop([target], axis = 1)
filtered_header = header #df.columns.tolist() #data_no_target.columns.tolist()
Y = df[target].to_numpy() #dtype=np.float32)
print("numeric:", numeric_header)
print("categorical:", categorical_header)
headers = {"full_header" : full_header ,
"filtered_header_with_y": header,
"filtered_header": filtered_header,
"numeric_header": numeric_header,
"categorical_header": categorical_header}
return headers, target, FULL, data_no_target.to_numpy(), df_dirty, Y, df_clean, full_scaler, CAT_ENCODER
def reverse_categorical_columns(ds, data, label_encoder):
dataset_config = _get_data_config()
return pr.reverse_categorical_columns(ds, data, label_encoder, dataset_config)
def reverse_to_input_domain(ds, data, scaler, CAT_ENCODER):
lop_data = pd.DataFrame(scaler.inverse_transform(data), columns = data.columns)
#META INFORMATION
dataset_config = _get_data_config()
#negative columns go to zero if the column does not allow for negative values
allow_negatives = dataset_config[ds]["allow_negatives"]
min_zero_columns = lop_data.columns.difference(allow_negatives)
lop_data[lop_data[min_zero_columns] < 0] = 0
#round integer columns to the closest integer
non_integers = dataset_config[ds]["date_cols"] + dataset_config[ds]["id_cols"] + dataset_config[ds]["cat_cols"] + dataset_config[ds]["float_cols"]
integer_columns = lop_data.columns.difference(non_integers)
lop_data[integer_columns] = lop_data[integer_columns].round(0).astype('int64')
###########################################################
return reverse_categorical_columns(ds, lop_data, CAT_ENCODER)
def prepare_data_subset(df, ds, missing, scaler, CAT_ENCODER, normalize_y = False):
dataset_config = _get_data_config()
df = _replace_nan(df, missing)
#drop rows that still contains empty cells
df,_ = pr.preprocess(df,dataset_config[ds]["target"],
dataset_config[ds]["date_cols"],
dataset_config[ds]["id_cols"],
dataset_config[ds]["cat_cols"],
les = CAT_ENCODER)
#non-normalized copy
target = dataset_config[ds]['target']
y_ = df[target].copy()
df = _normalize_by_mean(df, scaler)
if not normalize_y:
df[target] = y_
return df
def get_date_columns(ds, target_dataset, full_dataset):
dataset_config = _get_data_config()
dates = dataset_config[ds]["date_cols"]
target_dataset[dates] = full_dataset[dates]
return target_dataset