-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrein_benchmark.py
329 lines (254 loc) · 14.1 KB
/
rein_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
#os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import csv
import sys
import matplotlib.pyplot as plt
import time
import tensorflow as tf
import cleaners as cln
import numpy as np
import argparse
import pandas as pd
from tensorflow.keras import Input, Model, Sequential
from tensorflow.keras.layers import Dense, Concatenate
from datasets import get_tf_database, load_regression, load_regression_dirty, load_features_and_data, reverse_categorical_columns, reverse_to_input_domain, get_date_columns
from latent_operators import LatentOperator
from transformation_in_x import apply_transformation_in_x, include_errors_at_random
from utils import create_and_train_LOP, create_and_train_classifier
from error_detection import predict_on_enhanced, eval_correctly, eval_numeric_rmse
from sklearn.metrics import mean_squared_error, accuracy_score, f1_score, precision_score, recall_score
from copy import deepcopy
parser = argparse.ArgumentParser(description="Generalizable Data Cleaning of Tabular Data in Latent Space"
parser.add_argument("--epochs", type=int, default=20)
parser.add_argument("--learning_rate", type=float, default=0.001)
parser.add_argument("--latent", type=int, default=240)
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--K", type=int, default=4)
parser.add_argument("--dataset", default='adult')
parser.add_argument("--experiment", default='vs_dirty')
parser.add_argument("--eval_tuples", type=int, default=-1)
args = parser.parse_args()
np.set_printoptions(threshold=sys.maxsize)
print("Is Eager execution?",tf.executing_eagerly())
LOP = None
@tf.function
def _translate_all_columns_by_1(inputs):
zs = inputs
for column in range(zs.shape[0]):
new_z = LOP.translate_operator(zs[column], 1)
zs = tf.tensor_scatter_nd_update(zs, [column], new_z)
return zs
def generate_cleaned_data(x_, Zs, Ks, decoder):
#avoid decoding Zs when there is no error, just use the value
xs = tf.squeeze(tf.transpose(decoder(tf.unstack(Zs, axis = 1)), [1,0,2]))
x_p = tf.where(Ks == 0, x_, xs)
return x_p
#CONFIGS========================================================
ds = args.dataset
T_EXAMPLES = args.eval_tuples
V_EXAMPLES = args.eval_tuples
T_EVAL_EXAMPLES = args.eval_tuples
V_EVAL_EXAMPLES = args.eval_tuples
MODEL_EPOCHS = 200
K_EPOCHS = args.epochs
MISSING_REPLACE = '3.0'
T = 'missing_values'
K = args.K
#LOAD AIRBNB, NASA or BIKE=====================================
start = time.time()
#MAX AND MIN FOR THE ALREADY FILTERED SET + TARGET
x_clean_train, y_clean_train, x_clean, y_clean, MAX, MIN, SCALER, CAT_ENCODER = load_regression(ds, T_EVAL_EXAMPLES, V_EVAL_EXAMPLES, True, normalize_sklearn = True)
x_dirty_train, y_dirty_train, x_test, y_test = load_regression_dirty(ds, T_EVAL_EXAMPLES, V_EVAL_EXAMPLES, MISSING_REPLACE, SCALER, CAT_ENCODER, True, MAX, MIN, normalize_sklearn = True)
print(y_test.shape)
COLS = x_clean_train.shape[1]
print("# COLUMNS:", COLS)
train_dataset = get_tf_database(x_clean_train[0:T_EXAMPLES],
x_clean_train[0:T_EXAMPLES],
args.batch_size)
val_dataset = get_tf_database(x_clean[0:V_EXAMPLES],
x_clean[0:V_EXAMPLES],
args.batch_size)
print(time.time() - start)
# TRAIN MODELS========================================================
start = time.time()
encoder, decoder, LOP, t_acc, v_acc = create_and_train_LOP(train_dataset,
val_dataset,
COLS,
args.latent,
K,
1,
T,
epochs=args.epochs,
model_name=args.dataset)
print("LOP ",time.time() - start, "sec", "Train loss:", t_acc," VAL loss:" , v_acc)
for el in encoder.layers:
el.trainable = False
for el in decoder.layers:
el.trainable = False
#Default Classifier MODEL========================================================================
t_dataset = get_tf_database(x_clean_train, y_clean_train, args.batch_size)
v_dataset = get_tf_database(x_clean, y_clean, args.batch_size)
start = time.time()
nnreg_model = create_and_train_classifier(t_dataset,
v_dataset,
COLS,
args.latent,
T,
n_epochs=MODEL_EPOCHS,
model_name=args.dataset)
print("NN train ", time.time() - start, "sec")
#Enhanced MODEL===============================================================================
concatenation_model = Concatenate()(decoder.output)
enhanced_model = Model(inputs=decoder.input, outputs= nnreg_model(concatenation_model))
enhanced_model.compile(optimizer='adam',loss='mse', metrics=[tf.keras.metrics.RootMeanSquaredError()])
n_scores = []
en_scores = []
en_smart_scores = []
clean_scores = []
#MISSING P percentage of values==================================================
x_test = x_test[0:V_EXAMPLES]
y_test = y_test[0:V_EXAMPLES]
print("# tuples for test:", x_test.shape[0])
#percentages_of_noise = [0.0]
# clean_scores.append(nnreg_model.evaluate(x_clean, y_clean)[1])
# n_scores.append(nnreg_model.evaluate(x_test, y_test)[1]) #dirty score
# Zs, Ks = predict_on_enhanced(x_test, LOP, encoder, decoder, _translate_all_columns_by_1)
# en_scores.append(enhanced_model.evaluate(tf.unstack(Zs, axis = 1), y_test)[1])
# detections = eval_correctly(x_test, y_test, Zs, Ks, decoder, nnreg_model)
# en_smart_scores.append(detections)
# #eval_correctly(x_test, y_test, Zs, Ks, decoder, nnreg_model)
############ WRITE CLEAN DATA #################
headers, target_name, dirty_data, _, data_with_y, _, clean_data, FULL_SCALER, CAT_ENCODER = load_features_and_data(ds, T_EVAL_EXAMPLES, V_EVAL_EXAMPLES, MISSING_REPLACE, SCALER, CAT_ENCODER, True, MAX, MIN, normalize_sklearn = True)
full_header = headers["full_header"]
header_with_y = headers["filtered_header_with_y"]
filtered_header = headers["filtered_header"]
numeric_header = headers["numeric_header"]
categorical_header = headers["categorical_header"]
X_dirty = deepcopy(data_with_y[filtered_header]).to_numpy()
Zs_csv, Ks_csv = predict_on_enhanced(X_dirty, LOP, encoder, decoder, _translate_all_columns_by_1)
clean_csv = generate_cleaned_data(X_dirty, Zs_csv, Ks_csv, decoder)
#GENERATE THE RMSE COMPARISION TO REIN#######################################
rmse_dirty = mean_squared_error(clean_data[numeric_header], dirty_data[numeric_header], squared = False)
#EVAL NUMERIC RMSE###########################################################
df_cleaned = deepcopy(dirty_data)
df_cleaned[filtered_header] = clean_csv
rmse = mean_squared_error(clean_data[numeric_header], df_cleaned[numeric_header], squared = False)
def _clean_with_error_detector(_df_cleaned, _dirty_data, _detections):
rows_ = _detections[:, 0] - 2 # rein index starts at 1 and jumps the header
cols_ = _detections[:, 1]
df_ = deepcopy(_dirty_data) #clean_data)
#only use know dirty position repairs
for r, c in zip(rows_, cols_):
df_.iloc[r, c] = _df_cleaned.iloc[r, c]
return df_
rmse_ed2 = 0
rmse_dboost = 0
rmse_gt = 0
#EVAL NUMERIC RMSE BY COLUMN################################################
rmse_by_column_dirty = 0
rmse_by_column_clean = 0
rmse_by_column_gt = 0
n_num_cols = len(numeric_header) #len(numeric_header) + 1 #rein benchmark includes the target with 0 errors
if n_num_cols > 0 :
print("\n RMSE (less is better) on Numerical Columns Dirty vs Clean")
for num_col in numeric_header:
r_clean = mean_squared_error(clean_data[num_col], df_cleaned[num_col], squared = False)
r_dirty = mean_squared_error(clean_data[num_col], dirty_data[num_col], squared = False)
#r_gt = mean_squared_error(clean_data[num_col], df_gt_cleaned[num_col], squared = False)
print(f'{num_col}', r_dirty, " vs ", r_clean)
rmse_by_column_dirty += r_dirty
rmse_by_column_clean += r_clean
#rmse_by_column_gt += r_gt
rmse_by_column_clean = rmse_by_column_clean / n_num_cols
rmse_by_column_dirty = rmse_by_column_dirty / n_num_cols
#rmse_by_column_gt = rmse_by_column_gt / n_num_cols
print(f'TOTAL: {rmse_by_column_dirty} vs {rmse_by_column_clean}')# vs {rmse_by_column_gt}')
#EVAL CATEGORICAL ACCURACY BY COLUMN###################################################
c = reverse_to_input_domain(args.dataset, clean_data, FULL_SCALER, CAT_ENCODER)
d = reverse_to_input_domain(args.dataset, dirty_data, FULL_SCALER, CAT_ENCODER)
l = reverse_to_input_domain(args.dataset, df_cleaned, FULL_SCALER, CAT_ENCODER)
pd.options.display.max_columns = None
pd.options.display.max_rows = None
precision_categories_dirty = 0
precision_categories = 0
recall_categories_dirty = 0
recall_categories = 0
accuracy_categories_dirty = 0
accuracy_categories = 0
accuracy_categories_gt_detections = 0
accuracy_categories_dboost_detections = 0
accuracy_categories_ed2_detections = 0
n_cat_cols = len(categorical_header) #- 1 #beer_name
def _cat_metric(metric, clean, dirty, repaired):
avg_type = "weighted"
#dirty, clean
return metric(clean, dirty, average = avg_type, zero_division = 0.0), metric(clean, repaired, average = avg_type, zero_division = 0.0)
if n_cat_cols > 0:
print("\n F1 (more is better) on Categorical Columns Dirty vs Clean")
for cat_col in categorical_header:
f1_dirty, f1_clean = _cat_metric(f1_score, c[cat_col], d[cat_col], l[cat_col])
pre_dirty, pre_clean = _cat_metric(precision_score, c[cat_col], d[cat_col], l[cat_col])
rec_dirty, rec_clean = _cat_metric(recall_score, c[cat_col], d[cat_col], l[cat_col])
accuracy_categories_dirty += f1_dirty
precision_categories_dirty += pre_dirty
recall_categories_dirty += rec_dirty
accuracy_categories += f1_clean
precision_categories += pre_clean
recall_categories += rec_clean
print(f'F1 {cat_col}', f1_dirty, " vs ", f1_clean)
print(f'Precision {cat_col}', pre_dirty, " vs ", pre_clean)
print(f'Recall {cat_col}', rec_dirty, " vs ", rec_clean)
accuracy_categories_dirty = accuracy_categories_dirty / n_cat_cols
accuracy_categories = accuracy_categories / n_cat_cols
precision_categories_dirty = precision_categories_dirty / n_cat_cols
precision_categories = precision_categories / n_cat_cols
recall_categories_dirty = recall_categories_dirty / n_cat_cols
recall_categories = recall_categories / n_cat_cols
accuracy_categories_dboost_detections = accuracy_categories_dboost_detections / n_cat_cols
accuracy_categories_ed2_detections = accuracy_categories_ed2_detections / n_cat_cols
accuracy_categories_gt_detections = accuracy_categories_gt_detections / n_cat_cols
print(f'TOTAL F1: {accuracy_categories_dirty} vs {accuracy_categories}')
dirty_data[filtered_header] = df_cleaned[filtered_header]#clean_csv
lop_data = reverse_to_input_domain(args.dataset, dirty_data, FULL_SCALER, CAT_ENCODER)
#replace the date columns
lop_data = get_date_columns(ds, lop_data, dirty_data)
lop_data.to_csv(f'./DATASETS_REIN/{args.dataset}/LOP.csv', index = False)
###EVALUATE REIN################################################################################
rmse_dirty, rmse_repaired = cln.evaluate(f"./DATASETS_REIN/{args.dataset}/clean.csv",
f"./DATASETS_REIN/{args.dataset}/dirty01.csv",
f"./DATASETS_REIN/{args.dataset}/LOP.csv",
args.eval_tuples)
print("Dirty vs LOP on REIN BENCHMARK: ", rmse_dirty, rmse_repaired)
#save results for plots
for_plots = pd.DataFrame({'rmse_numeric':rmse_repaired, 'rmse_gt_detector':rmse_gt, 'rmse_dirty': rmse_dirty,
'rmse_dboost': rmse_dboost, 'rmse_ed2': rmse_ed2,
'accuracy_categorical': accuracy_categories,
'accuracy_categorical_dirty': accuracy_categories_dirty,
'precision_categorical': precision_categories,
'precision_categorical_dirty': precision_categories_dirty,
'recall_categorical': recall_categories,
'recall_categorical_dirty': recall_categories_dirty,
'accuracy_categorical_ed2_detections': accuracy_categories_ed2_detections,
'accuracy_categorical_dboost_detections': accuracy_categories_dboost_detections,
'accuracy_categorical_gt_detections': accuracy_categories_gt_detections}, index = [0])
for_plots.index.name = "rein"
if not os.path.isdir("./evaluation"):
os.makedirs("./evaluation")
for_plots.to_csv(f'./evaluation/rein_rmse_{args.dataset}.csv')
########### WRITE DETECTION DICTIONARY ##########
#get row and column where there is no error (i.e. k = 0 = identity or equal to K)
detection_dictionary_indexes = tf.where(tf.math.logical_or(tf.equal(Ks_csv, 0), tf.equal(Ks_csv, K)))
det_idx = detection_dictionary_indexes.numpy()
#ORDER By COLUMN INDEX AND REPLACE IT WITH CORRECT ID OF THE FULL DATASET
replacement_indexes = [full_header.index(i) for i in filtered_header if i in full_header]
#print(full_header, filtered_header, replacement_indexes)
det_idx = pd.DataFrame(det_idx).sort_values([1, 0])
for idx, rplc in enumerate(replacement_indexes):
det_idx = det_idx.replace(str(idx), rplc)
#FIX FOR REIN BENCHMARK INDEXES ROWS JUMP HEADER AND START FROM 1, COLUMNS START FROM 0
det_idx = det_idx.apply(pd.to_numeric) + [2, 0]
#ADD "JUST A DUMMY VALUE"
dummy_column = np.full((det_idx.shape[0], 1), "JUST A DUMMY VALUE")
det_idx = pd.DataFrame(np.concatenate([det_idx, dummy_column], axis=1))
det_idx.to_csv(f'./DATASETS_REIN/{args.dataset}/detections.csv', header = False, index = False)