|
| 1 | +import os |
| 2 | +import torch |
| 3 | +import matplotlib.pyplot as plt |
| 4 | +import nvidia_smi |
| 5 | + |
| 6 | +import gpudrive |
| 7 | + |
| 8 | + |
| 9 | +def make_sim( |
| 10 | + data_dir, |
| 11 | + num_worlds, |
| 12 | + device, |
| 13 | + max_num_objects, |
| 14 | +): |
| 15 | + """Make simulator.""" |
| 16 | + |
| 17 | + # Create an instance of RewardParams |
| 18 | + reward_params = gpudrive.RewardParams() |
| 19 | + reward_params.rewardType = gpudrive.RewardType.OnGoalAchieved |
| 20 | + reward_params.distanceToGoalThreshold = 1.0 |
| 21 | + reward_params.distanceToExpertThreshold = 1.0 |
| 22 | + |
| 23 | + # Create an instance of Parameters |
| 24 | + params = gpudrive.Parameters() |
| 25 | + params.polylineReductionThreshold = 0.5 |
| 26 | + params.observationRadius = 10.0 |
| 27 | + params.collisionBehaviour = gpudrive.CollisionBehaviour.AgentRemoved |
| 28 | + params.datasetInitOptions = gpudrive.DatasetInitOptions.PadN |
| 29 | + params.rewardParams = reward_params |
| 30 | + params.IgnoreNonVehicles = True |
| 31 | + params.maxNumControlledVehicles = max_num_objects |
| 32 | + |
| 33 | + sim = gpudrive.SimManager( |
| 34 | + exec_mode=gpudrive.madrona.ExecMode.CPU |
| 35 | + if device == "cpu" |
| 36 | + else gpudrive.madrona.ExecMode.CUDA, |
| 37 | + gpu_id=0, |
| 38 | + num_worlds=num_worlds, |
| 39 | + auto_reset=False, |
| 40 | + json_path=data_dir, |
| 41 | + params=params, |
| 42 | + ) |
| 43 | + |
| 44 | + return sim |
| 45 | + |
| 46 | + |
| 47 | +def main( |
| 48 | + total_timesteps, |
| 49 | + num_worlds, |
| 50 | + episode_length, |
| 51 | + max_num_objects, |
| 52 | + data_dir, |
| 53 | + device="cuda", |
| 54 | +): |
| 55 | + # Storage |
| 56 | + time_checkpoints = [] |
| 57 | + free_memory = [] |
| 58 | + used_memory = [] |
| 59 | + perc_used = [] |
| 60 | + |
| 61 | + # MAKE SIM |
| 62 | + sim = make_sim( |
| 63 | + data_dir=data_dir, |
| 64 | + num_worlds=num_worlds, |
| 65 | + device=device, |
| 66 | + max_num_objects=max_num_objects, |
| 67 | + ) |
| 68 | + |
| 69 | + for sim_idx in range(num_worlds): |
| 70 | + obs = sim.reset(sim_idx) |
| 71 | + |
| 72 | + pid = os.getpid() |
| 73 | + print(f"PID: {pid}") |
| 74 | + |
| 75 | + # RUN SIMULATOR |
| 76 | + episode_step = 0 |
| 77 | + for global_step in range(total_timesteps): |
| 78 | + |
| 79 | + rand_actions = torch.randint( |
| 80 | + 0, 9, size=(num_worlds, max_num_objects, 3) |
| 81 | + ) |
| 82 | + |
| 83 | + # Apply actions |
| 84 | + sim.action_tensor().to_torch().copy_(rand_actions) |
| 85 | + |
| 86 | + # Step dynamics |
| 87 | + sim.step() |
| 88 | + |
| 89 | + episode_step += 1 |
| 90 | + |
| 91 | + # LOG GPU MEMORY |
| 92 | + if global_step % 200 == 0: |
| 93 | + nvidia_smi.nvmlInit() |
| 94 | + |
| 95 | + handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0) |
| 96 | + memory_info = nvidia_smi.nvmlDeviceGetMemoryInfo(handle) |
| 97 | + |
| 98 | + time_checkpoints.append(global_step) |
| 99 | + free_memory.append(memory_info.free) |
| 100 | + used_memory.append(memory_info.used) |
| 101 | + perc_used.append((memory_info.used / memory_info.total) * 100) |
| 102 | + |
| 103 | + print( |
| 104 | + f"Global step: {global_step} | Perc. memory used: {(memory_info.used / memory_info.total) * 100:.3f} % \n" |
| 105 | + ) |
| 106 | + |
| 107 | + # RESET if episode is done |
| 108 | + if episode_step == episode_length: |
| 109 | + for sim_idx in range(num_worlds): |
| 110 | + obs = sim.reset(sim_idx) |
| 111 | + episode_step = 0 |
| 112 | + |
| 113 | + return time_checkpoints, free_memory, used_memory, perc_used |
| 114 | + |
| 115 | + |
| 116 | +if __name__ == "__main__": |
| 117 | + (time_checkpoints, free_gpu_mem, used_memory, perc_used,) = main( |
| 118 | + total_timesteps=10_000, |
| 119 | + num_worlds=50, |
| 120 | + episode_length=90, |
| 121 | + max_num_objects=128, |
| 122 | + data_dir="example_data", |
| 123 | + ) |
| 124 | + |
| 125 | + # Plot stats |
| 126 | + fig, axs = plt.subplots(1, 2, figsize=(10, 4)) |
| 127 | + fig.suptitle("GPU Memory Profiling") |
| 128 | + axs[0].plot( |
| 129 | + time_checkpoints, |
| 130 | + free_gpu_mem, |
| 131 | + label="Free memory", |
| 132 | + linestyle="-", |
| 133 | + marker=".", |
| 134 | + ) |
| 135 | + axs[0].plot( |
| 136 | + time_checkpoints, |
| 137 | + used_memory, |
| 138 | + label="Used memory", |
| 139 | + linestyle="-", |
| 140 | + marker=".", |
| 141 | + ) |
| 142 | + axs[1].plot( |
| 143 | + time_checkpoints, |
| 144 | + perc_used, |
| 145 | + label="Perc. GPU memory used", |
| 146 | + linestyle="-", |
| 147 | + marker=".", |
| 148 | + color="red", |
| 149 | + ) |
| 150 | + axs[0].set_ylabel("Memory (MB)") |
| 151 | + axs[1].set_ylabel("Percentage %") |
| 152 | + axs[0].set_xlabel("Global steps") |
| 153 | + axs[1].set_xlabel("Global steps") |
| 154 | + axs[0].legend(), axs[1].legend() |
| 155 | + plt.tight_layout() |
| 156 | + plt.savefig("gpu_mem_prof.png", dpi=300) |
0 commit comments