-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathConvLSTM.py
259 lines (203 loc) · 9.68 KB
/
ConvLSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import torch.nn as nn
import torch
import torch.nn.functional as F
class ConvLSTMCell(nn.Module):
def __init__(self, input_dim, hidden_dim, kernel_size, bias):
"""
Initialize ConvLSTM cell.
Parameters
----------
input_dim: int
Number of channels of input tensor.
hidden_dim: int
Number of channels of hidden state.
kernel_size: (int, int)
Size of the convolutional kernel.
bias: bool
Whether or not to add the bias.
"""
super(ConvLSTMCell, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.kernel_size = kernel_size
self.padding = kernel_size[0] // 2, kernel_size[1] // 2
self.bias = bias
self.conv = nn.Conv2d(in_channels=self.input_dim + self.hidden_dim,
out_channels=4 * self.hidden_dim,
kernel_size=self.kernel_size,
padding=self.padding,
bias=self.bias)
def forward(self, input_tensor, cur_state):
h_cur, c_cur = cur_state
combined = torch.cat([input_tensor, h_cur], dim=1) # concatenate along channel axis
combined_conv = self.conv(combined)
cc_i, cc_f, cc_o, cc_g = torch.split(combined_conv, self.hidden_dim, dim=1)
i = torch.sigmoid(cc_i)
f = torch.sigmoid(cc_f)
o = torch.sigmoid(cc_o)
g = torch.tanh(cc_g)
c_next = f * c_cur + i * g
h_next = o * torch.tanh(c_next)
return h_next, c_next
def init_hidden(self, batch_size, image_size):
height, width = image_size
return (torch.zeros(batch_size, self.hidden_dim, height, width, device=self.conv.weight.device),
torch.zeros(batch_size, self.hidden_dim, height, width, device=self.conv.weight.device))
class ConvLSTM(nn.Module):
"""
Parameters:
input_dim: Number of channels in input
hidden_dim: Number of hidden channels
kernel_size: Size of kernel in convolutions
num_layers: Number of LSTM layers stacked on each other
batch_first: Whether or not dimension 0 is the batch or not
bias: Bias or no bias in Convolution
return_all_layers: Return the list of computations for all layers
Note: Will do same padding.
Input:
A tensor of size B, T, C, H, W or T, B, C, H, W
Output:
A tuple of two lists of length num_layers (or length 1 if return_all_layers is False).
0 - layer_output_list is the list of lists of length T of each output
1 - last_state_list is the list of last states
each element of the list is a tuple (h, c) for hidden state and memory
Example:
>> x = torch.rand((32, 10, 64, 128, 128))
>> convlstm = ConvLSTM(64, 16, 3, 1, True, True, False)
>> _, last_states = convlstm(x)
>> h = last_states[0][0] # 0 for layer index, 0 for h index
"""
def __init__(self, input_dim, hidden_dim, kernel_size, num_layers,
batch_first=False, bias=True, return_all_layers=False):
super(ConvLSTM, self).__init__()
self._check_kernel_size_consistency(kernel_size)
# Make sure that both `kernel_size` and `hidden_dim` are lists having len == num_layers
kernel_size = self._extend_for_multilayer(kernel_size, num_layers)
hidden_dim = self._extend_for_multilayer(hidden_dim, num_layers)
if not len(kernel_size) == len(hidden_dim) == num_layers:
raise ValueError('Inconsistent list length.')
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.kernel_size = kernel_size
self.num_layers = num_layers
self.batch_first = batch_first
self.bias = bias
self.return_all_layers = return_all_layers
cell_list = []
for i in range(0, self.num_layers):
cur_input_dim = self.input_dim if i == 0 else self.hidden_dim[i - 1]
cell_list.append(ConvLSTMCell(input_dim=cur_input_dim,
hidden_dim=self.hidden_dim[i],
kernel_size=self.kernel_size[i],
bias=self.bias))
self.cell_list = nn.ModuleList(cell_list)
def forward(self, input_tensor, hidden_state=None):
"""
Parameters
----------
input_tensor: construct the input shape by yourself
5-D Tensor either of shape (t, b, c, h, w) or (b, t, c, h, w)
hidden_state: hidden layer could be set by yourself
None.
Returns
----------
last_state_list, layer_output
"""
if not self.batch_first:
# (t, b, c, h, w) -> (b, t, c, h, w)
input_tensor = input_tensor.permute(1, 0, 2, 3, 4)
b, _, _, h, w = input_tensor.size()
# Implement stateful ConvLSTM
if hidden_state is not None:
raise NotImplementedError()
else:
# Since the init is done in forward. Can send image size here
hidden_state = self._init_hidden(batch_size=b,
image_size=(h, w))
layer_output_list = []
last_state_list = []
seq_len = input_tensor.size(1)
cur_layer_input = input_tensor
for layer_idx in range(self.num_layers):
h, c = hidden_state[layer_idx]
output_inner = []
for t in range(seq_len):
h, c = self.cell_list[layer_idx](input_tensor=cur_layer_input[:, t, :, :, :], cur_state=[h, c])
output_inner.append(h)
layer_output = torch.stack(output_inner, dim=1)
cur_layer_input = layer_output
layer_output_list.append(layer_output) # 所有时间点的隐层状态以及cell状态
last_state_list.append([h, c]) # 最后一层的隐层状态以及cell状态
if not self.return_all_layers:
layer_output_list = layer_output_list[-1:]
last_state_list = last_state_list[-1:]
return layer_output_list, last_state_list
def _init_hidden(self, batch_size, image_size):
init_states = []
for i in range(self.num_layers):
init_states.append(self.cell_list[i].init_hidden(batch_size, image_size))
return init_states
@staticmethod
def _check_kernel_size_consistency(kernel_size):
if not (isinstance(kernel_size, tuple) or
(isinstance(kernel_size, list) and all([isinstance(elem, tuple) for elem in kernel_size]))):
raise ValueError('`kernel_size` must be tuple or list of tuples')
@staticmethod
def _extend_for_multilayer(param, num_layers):
if not isinstance(param, list):
param = [param] * num_layers
return param
class outputCNN(nn.Module):
def __init__(self, input_dim):
super(outputCNN, self).__init__()
self.conv1 = nn.Conv2d(in_channels=input_dim, out_channels=128, kernel_size=(5, 5), padding=(2, 2))
self.pool = nn.MaxPool2d(2, 2, return_indices=True)
self.conv2 = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=(5, 5), padding=(2, 2))
self.unpool = nn.MaxUnpool2d(2, 2)
self.conv3 = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=(5, 5), padding=(2, 2))
self.conv4 = nn.ConvTranspose2d(in_channels=64, out_channels=1, kernel_size=(5, 5), padding=(2, 2))
def forward(self,x):
x = F.relu(self.conv1(x))
output_size = x.shape
x, i = self.pool(x)
x = F.relu(self.conv2(x))
x = self.unpool(x, i, output_size=output_size)
x = F.relu(self.conv3(x))
# x = torch.sigmoid(self.conv4(x))
x = torch.relu(self.conv4(x))
return x
class ConvLSTM_model(nn.Module):
def __init__(self, VGG_indim, VGG_outdim, input_dim, hidden_dim, kernel_size, num_layers,
batch_first=False, bias=True, return_all_layers=False, block_nums=None):
super(ConvLSTM_model, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.kernel_size = kernel_size
self.num_layers = num_layers
self.batch_first = batch_first
self.bias = bias
self.return_all_layers = return_all_layers
self.conv_lstm = ConvLSTM(self.input_dim, self.hidden_dim, self.kernel_size, self.num_layers,
self.batch_first, self.bias, self.return_all_layers)
self.outputCNN = outputCNN(self.hidden_dim)
def initialize_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(self, x):
# output_list是最后一层的所有时间点状态的叠加之后的结果
# output是output_list最后一个时间点[隐层状态, cell状态]
output_list, output = self.conv_lstm(x)
conv_output_list = []
for i in range(output_list[0].size(1)):
conv_output_list.append(self.outputCNN(output_list[0][:, i, :, :, :]))
conv_output = [self.outputCNN(output[0][0]), self.outputCNN(output[0][1])]
conv_output_list_ret = torch.stack(conv_output_list, dim=1)
# conv_output_list_ret = output_list[0]
# conv_output = output[0]
return output_list, output, conv_output, conv_output_list_ret