-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtest_demo.py
165 lines (155 loc) · 5.05 KB
/
test_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy as np
from scipy import stats
import scipy.io as sio
import os
import torch
from torch import nn
from dataloader import Data_Loader
import util
import torch.utils.data
from torchfoldext import FoldExt
import sys
import json
import partnet as partnet_model
with open('./part_color_mapping.json', 'r') as f:
color = json.load(f)
for c in color:
c[0] = int(c[0]*255)
c[1] = int(c[1]*255)
c[2] = int(c[2]*255)
def writeply(savedir, data, label):
path = os.path.dirname(savedir)
if not os.path.exists(path):
os.makedirs(path)
if data.size(0) == 0:
n_vertex = 0
else:
n_vertex = data.size(1)
with open(savedir, 'w') as f:
f.write('ply\n')
f.write('format ascii 1.0\n')
f.write('comment 111231\n')
f.write('element vertex %d\n' % n_vertex)
f.write('property float x\n')
f.write('property float y\n')
f.write('property float z\n')
f.write('property float nx\n')
f.write('property float ny\n')
f.write('property float nz\n')
f.write('property uchar red\n')
f.write('property uchar green\n')
f.write('property uchar blue\n')
f.write('property uchar label\n')
f.write('end_header\n')
for j in range(n_vertex):
f.write('%g %g %g %g %g %g %d %d %d %d\n' % (*data[0, j], *color[label[j]], label[j]))
def normalize_shape(shape):
shape_min, _ = torch.min(shape[:,:,:3], 1)
shape_max, _ = torch.max(shape[:,:,:3], 1)
x_length = shape_max[0, 0] - shape_min[0, 0]
y_length = shape_max[0, 1] - shape_min[0, 1]
z_length = shape_max[0, 2] - shape_min[0, 2]
length = shape_max - shape_min
max_length = torch.max(length)
scale = 1/max_length
center = shape_min + length/2
print(center[0, 0],center[0, 1],center[0, 2], scale)
for i in range(2048):
shape[0, i, 0] = (shape[0, i, 0] - center[0, 0])* scale
shape[0, i, 1] = (shape[0, i, 1] - center[0, 1])* scale
shape[0, i, 2] = (shape[0, i, 2] - center[0, 2])* scale
return shape
def decode_structure(model, feature, points_f, shape):
"""
segment shape
"""
global m
n_points = shape.size(1)
loc_f = model.pcEncoder(shape)
if feature is None:
feature = loc_f
f_c1 = torch.cat([feature, loc_f], 1)
label_prob = model.nodeClassifier(f_c1)
_, label = torch.max(label_prob, 1)
label = label.item()
if label == 1 or label == 3: # ADJ
left, right = model.adjDecoder(f_c1)
f_max, _ = torch.max(points_f, 2)
f_c2 = torch.cat([f_max, f_c1], 1)
point_label_prob, _ = model.decoder.loc_points_predictor(points_f, f_c2)
point_label_prob = point_label_prob.cpu()
_, point_label=torch.max(point_label_prob, 1)
left_list=[]
right_list=[]
for i in range(n_points):
if point_label[0, i].item() == 0:
left_list.append(i)
else:
right_list.append(i)
left_idx=torch.LongTensor(left_list).cuda()
right_idx=torch.LongTensor(right_list).cuda()
if left_idx.size(0) > 20 and right_idx.size(0) > 20:
l_pc=torch.index_select(shape, 1, left_idx)
l_feature=torch.index_select(points_f, 2, left_idx)
r_pc=torch.index_select(shape, 1, right_idx)
r_feature=torch.index_select(points_f, 2, right_idx)
l_labeling = decode_structure(model, left, l_feature, l_pc)
r_labeling = decode_structure(model, right, r_feature, r_pc)
prediction = torch.LongTensor(n_points).zero_()
for i, j in enumerate(left_idx):
prediction[j.item()]=l_labeling[i]
for i, j in enumerate(right_idx):
prediction[j.item()]=r_labeling[i]
return prediction
else:
prediction = torch.LongTensor(n_points).fill_(m)
m += 1
return prediction
elif label == 2:
f_max, _ = torch.max(points_f, 2)
f_c2 = torch.cat([f_max, f_c1], 1)
point_label_prob, _ = model.decoder.loc_points_predictor_multi(points_f, f_c2)
point_label_prob = point_label_prob.cpu()
_, point_label = torch.max(point_label_prob, 1)
prediction = torch.LongTensor(n_points)
for i in range(point_label.size(1)):
prediction[i] = m+point_label[0, i].item()
mx = torch.max(point_label).item()
m += mx + 1
return prediction
else:
prediction=torch.LongTensor(n_points).fill_(m)
m += 1
return prediction
m = 0
def main():
config = util.get_args()
config.cuda = not config.no_cuda
torch.cuda.set_device(config.gpu)
if config.cuda and torch.cuda.is_available():
print("Using CUDA on GPU ", config.gpu)
else:
print("Not using CUDA.")
net = partnet_model.PARTNET(config)
net.load_state_dict(torch.load(config.save_path + '/partnet_final.pkl', map_location=lambda storage, loc: storage.cuda(config.gpu)))
if config.cuda:
net.cuda()
net.eval()
if not os.path.exists(config.output_path + 'segmented'):
os.makedirs(config.output_path + 'segmented')
print("Loading data ...... ", end='\n', flush=True)
shape = torch.from_numpy(sio.loadmat(config.data_path + 'demo.mat')['pc']).float()
##for your own new shape
##shape = normalize_shape(shape)
with torch.no_grad():
shape = shape.cuda()
points_feature = net.pointnet(shape)
root_feature = net.pcEncoder(shape)
global m
m = 0
label = decode_structure(net, root_feature, points_feature, shape)
#segmented results
writeply(config.output_path + 'segmented/demo.ply', shape, label)
print('Successfully output result!')
if __name__ == '__main__':
main()