-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmulti_tar.py
305 lines (299 loc) · 19.6 KB
/
multi_tar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import argparse
import os
import yaml
import time
# Default settings
parser = argparse.ArgumentParser(description='Source Free DA')
# Dataset Parameters
parser.add_argument("--config", default="DomainNet.yaml")
parser.add_argument('-bp', '--base-path', default="./")
parser.add_argument("--writer", default="tensorboard", help="tensorboard or wandb")
parser.add_argument('-lp', '--log-path', default="./") # log path
parser.add_argument('-e', '--entity', default="")
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 8)')
# Train Info Parameters
parser.add_argument('-t', '--train-time', default="1", type=str,
metavar='N', help='the x-th time of training')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-dp', '--data-parallel', action='store_false', help='Use Data Parallel')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument("--gpu", default="0,1", type=str, metavar='GPU plans to use', help='The GPU id plans to use')
args = parser.parse_args()
# import config files
with open(r"./adaptationcfg/{}".format(args.config)) as file:
configs = yaml.full_load(file)
# set the visible GPU
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
from utils.reproducibility import setup_seed
setup_seed()
from train.cosda.cosda import cosda
from train.nrc.nrc import nrc_train, nrc_train_ema
from train.shot.shot_plus import shot_train
from train.aad.aad import aad_train, alpha_decay
from train.nrc.kd_nrc import kd_nrc_train
from train.aad.kd_aad import kd_aad_train
from train.gsfda.gsfda import gsfda_train
from train.cotta.cotta import cotta_train
from utils.ema import moving_weight, exponential_moving_average, bn_statistics_moving_average
from utils.avgmeter import get_bn_statistics
from train.dataaug.preprocess import DataPreprocess
from train.dac.dac import dac_train
from utils.integration_utils import build_pretrained_filepath, build_dataloaders, build_models, build_optimizers, \
build_writer, build_accuracy_evaluation, build_method_preprocess_items
from datasets.DomainNet import get_domainnet_dloader
from train.dac.DomainNetDaC import get_domainnet_dac_dloader
from train.dac.OfficeHomeDaC import get_officehome_dac_dloader
import wandb
from utils.avgmeter import load_bn_statistics
from train.utils import test_per_domain
import copy
from datasets.OfficeHome import get_officehome_dloader
def main(args=args, configs=configs):
# build datasets
if configs['DataConfig']['dataset'] == 'DomainNet':
domains = ['real', 'infograph', 'clipart', 'painting', 'sketch', 'quickdraw']
if configs['DAConfig']['method'] == 'DaC':
data_loader = get_domainnet_dac_dloader
else:
data_loader = get_domainnet_dloader
num_classes = 345
elif configs['DataConfig']['dataset'] == "OfficeHome":
domains = ["Art", "Clipart", "Product", "Real_World"]
if configs['DAConfig']['method'] == 'DaC':
data_loader = get_officehome_dac_dloader
else:
data_loader = get_officehome_dloader
num_classes = 65
else:
raise NotImplementedError("The dataset is not implemented yet!")
train_dataloaders = {}
test_dataloaders = {}
for domain in domains:
train_dataloaders[domain], test_dataloaders[domain] = data_loader(args.base_path, domain,
configs["TrainingConfig"][
"batch_size"],
args.workers)
# build initial model
source_domains = [domains[0]]
target_domains = [i for i in domains[1:]]
configs["DAConfig"]["source_domain"] = source_domains[0]
file_path, pretrained_folder_name = build_pretrained_filepath(args.base_path, configs)
teacher_backbone, teacher_classifier, student_backbone, student_classifier = build_models(file_path, configs,
num_classes,
multi_gpu=args.data_parallel)
for target_domain in target_domains:
best_backbone = None
best_classifier = None
best_acc = 0
source_domain = source_domains[-1]
configs["DAConfig"]["source_domain"] = source_domain
configs["DAConfig"]["target_domain"] = target_domain
# build the model for the optimization result
if target_domain == "quickdraw" or target_domain == "infograph":
configs["TrainingConfig"]["total_epochs"] = 10
else:
configs["TrainingConfig"]["total_epochs"] = 20
backbone_optimizer, classifier_optimizer, backbone_scheduler, classifier_scheduler = build_optimizers(
student_backbone, student_classifier, configs)
# build writer
writer = build_writer(args, configs, project=f'Multi-target_{configs["DataConfig"]["dataset"]}_{configs["DAConfig"]["method"]}', entity=args.entity, multi_target=True)
if configs["TrainingConfig"]["ema"]:
source_bn_statistics = get_bn_statistics(student_backbone.state_dict())
target_bn_statistics = None
else:
source_bn_statistics = None
target_bn_statistics = None
print("Begin Current Training: {} -> {}".format(source_domain, target_domain))
batch_per_epoch = round(configs["TrainingConfig"]["epoch_samples"] / configs["TrainingConfig"]["batch_size"])
data_preprocess = DataPreprocess(**configs["DataAugConfig"])
# build memory banks for cluster based methods
target_train_dloader = train_dataloaders[target_domain]
target_test_dloader = test_dataloaders[target_domain]
method_preprocess_items = build_method_preprocess_items(args, configs, target_train_dloader, student_backbone,
student_classifier, data_preprocess, num_classes)
# test the initial accuracy
for s in source_domains:
test_per_domain(s, test_dataloaders[s], student_backbone,
student_classifier, -1, writer=writer, num_classes=num_classes,
top_5_accuracy=(num_classes > 10))
test_per_domain(configs["DAConfig"]["target_domain"], target_test_dloader, student_backbone,
student_classifier, -1, writer=writer, num_classes=num_classes,
top_5_accuracy=(num_classes > 10))
for epoch in range(args.start_epoch, configs["TrainingConfig"]["total_epochs"]):
print("Begin epoch: {}/{}".format(epoch, configs["TrainingConfig"]["total_epochs"] - args.start_epoch))
if configs["DataAugConfig"]["method"] == "edgemix" and epoch + configs["DataAugConfig"][
"finetune_epochs"] == \
configs["TrainingConfig"]["total_epochs"]:
data_preprocess = DataPreprocess(method="identity")
if configs["DAConfig"]["method"] == "CoSDA":
temperature = moving_weight(epoch, int(configs["TrainingConfig"]["total_epochs"]),
configs["DistillConfig"]["temperature_begin"],
configs["DistillConfig"]["temperature_end"])
confidence_gate = moving_weight(epoch, configs["TrainingConfig"]["total_epochs"],
configs["DistillConfig"]["confidence_gate_begin"],
configs["DistillConfig"]["confidence_gate_end"])
print("temperature: {}, confidence_gate: {}".format(temperature, confidence_gate))
only_mi = (target_domain == "quickdraw") or (target_domain == "infograph")
cosda(target_train_dloader, teacher_backbone, teacher_classifier, student_backbone,
student_classifier, backbone_optimizer, classifier_optimizer, batch_per_epoch,
confidence_gate, beta=configs["DistillConfig"]["beta"], temperature=temperature,
preprocess=data_preprocess, reg_alpha=configs["DistillConfig"]["reg_alpha"],
only_mi=only_mi)
elif configs["DAConfig"]["method"] == "NRC":
if epoch > int(0.5 * configs["TrainingConfig"]["total_epochs"]) and \
configs["DataConfig"]["dataset"] == "OfficeHome":
configs["NRCConfig"]["k"] = 5
configs["NRCConfig"]["m"] = 4
if configs["NRCConfig"]["ema"] is True:
nrc_train_ema(method_preprocess_items["feature_bank"], method_preprocess_items["score_bank"],
target_train_dloader,
student_backbone, student_classifier,
backbone_optimizer, classifier_optimizer, batch_per_epoch, num_classes,
configs["NRCConfig"]["k"], configs["NRCConfig"]["m"], data_preprocess)
else:
nrc_train(target_train_dloader, student_backbone, student_classifier, backbone_optimizer,
classifier_optimizer, batch_per_epoch, configs["ModelConfig"]["bottleneck_dim"],
num_classes,
configs["NRCConfig"]["k"], configs["NRCConfig"]["m"], data_preprocess)
elif configs["DAConfig"]["method"] == "SHOT":
shot_train(target_train_dloader, student_backbone, backbone_optimizer, student_classifier,
batch_per_epoch, epoch, configs['DataConfig']['dataset'],
configs["SHOTConfig"]["threshold"],
configs["SHOTConfig"]["softmax_epsilon"],
configs["SHOTConfig"]["cls_par"], configs["SHOTConfig"]["ent_par"],
configs["SHOTConfig"]["gent"], configs["SHOTConfig"]["ssl_par"],
configs["SHOTConfig"]["shot_plus"], rot_classifier=method_preprocess_items["rot_classifier"],
rot_optimizer=method_preprocess_items["rot_optimizer"],
preprocess=data_preprocess)
if configs["SHOTConfig"]["shot_plus"] is True:
method_preprocess_items["rot_scheduler"].step()
elif configs["DAConfig"]["method"] == "AaD":
alpha = alpha_decay(alpha_in=configs["AaDConfig"]["alpha"], gamma=configs["AaDConfig"]["gamma"],
epoch=epoch)
aad_train(target_train_dloader, student_backbone, student_classifier, backbone_optimizer,
classifier_optimizer, batch_per_epoch, configs["ModelConfig"]["bottleneck_dim"], num_classes,
configs["AaDConfig"]["k"], alpha, data_preprocess)
elif configs["DAConfig"]["method"] == "Gsfda":
gsfda_train(target_train_dloader, student_backbone, backbone_optimizer, student_classifier,
classifier_optimizer,
method_preprocess_items["feature_bank"], method_preprocess_items["score_bank"],
batch_per_epoch,
class_num=num_classes, bottleneck_dim=configs["ModelConfig"]["bottleneck_dim"],
epsilon=configs["GsfdaConfig"]["epsilon"], gen_par=configs["GsfdaConfig"]["gen_par"],
k=configs["GsfdaConfig"]["k"], preprocess=data_preprocess)
elif configs["DAConfig"]["method"] == "CoSDA+NRC":
temperature = moving_weight(epoch, int(configs["TrainingConfig"]["total_epochs"]),
configs["DistillConfig"]["temperature_begin"],
configs["DistillConfig"]["temperature_end"])
if epoch > 0.5 * configs["TrainingConfig"]["total_epochs"]:
configs["NRCConfig"]["k"] = 5
configs["NRCConfig"]["m"] = 4
if configs["NRCConfig"]["ema"]:
kd_nrc_train(target_train_dloader, student_backbone,
student_classifier, backbone_optimizer,
classifier_optimizer, batch_per_epoch, configs["DistillConfig"]["beta"], temperature,
configs["ModelConfig"]["bottleneck_dim"], num_classes, configs["NRCConfig"]["k"],
configs["NRCConfig"]["m"], method_preprocess_items["feature_bank"],
method_preprocess_items["score_bank"], preprocess=data_preprocess)
else:
kd_nrc_train(target_train_dloader, student_backbone,
student_classifier, backbone_optimizer,
classifier_optimizer, batch_per_epoch, configs["DistillConfig"]["beta"],
temperature, configs["ModelConfig"]["bottleneck_dim"],
num_classes, configs["NRCConfig"]["k"], configs["NRCConfig"]["m"],
preprocess=data_preprocess)
elif configs["DAConfig"]["method"] == "CoSDA+AaD":
alpha = alpha_decay(alpha_in=configs["AaDConfig"]["alpha"], gamma=configs["AaDConfig"]["gamma"],
epoch=epoch)
if configs["AaDConfig"]["ema"]:
kd_aad_train(target_train_dloader, student_backbone,
student_classifier, backbone_optimizer,
classifier_optimizer,
batch_per_epoch, configs["DistillConfig"]["beta"],
configs["ModelConfig"]["bottleneck_dim"],
num_classes, configs["AaDConfig"]["k"], method_preprocess_items["feature_bank"],
method_preprocess_items["score_bank"], alpha, preprocess=data_preprocess)
else:
kd_aad_train(target_train_dloader, student_backbone,
student_classifier, backbone_optimizer,
classifier_optimizer,
batch_per_epoch, configs["DistillConfig"]["beta"],
configs["ModelConfig"]["bottleneck_dim"],
num_classes, configs["AaDConfig"]["k"], None, None, alpha,
preprocess=data_preprocess)
elif configs["DAConfig"]["method"] == "DaC":
dac_train(target_train_dloader, student_backbone,
student_classifier, backbone_optimizer,
batch_per_epoch, num_classes, epoch, configs["DaCConfig"]["K"],
configs["DaCConfig"]["k"], configs["DaCConfig"]["threshold"],
configs["DaCConfig"]["confidence_gate"],
configs["DaCConfig"]["cls_par"], configs["DaCConfig"]["im_par"],
configs["DaCConfig"]["con_par"], configs["DaCConfig"]["mmd_par"],
method_preprocess_items["memory_dac"])
elif configs["DAConfig"]["method"] == "CoTTA":
confidence_gate = moving_weight(epoch, configs["TrainingConfig"]["total_epochs"],
configs["CoTTAConfig"]["confidence_gate_begin"],
configs["CoTTAConfig"]["confidence_gate_end"])
cotta_train(target_train_dloader, teacher_backbone,
teacher_classifier, student_backbone, student_classifier,
method_preprocess_items["initial_state"], backbone_optimizer, classifier_optimizer,
batch_per_epoch,
aug_times=configs["CoTTAConfig"]["aug_times"], rst=configs["CoTTAConfig"]["rst"],
ap=configs["CoTTAConfig"]["ap"], confidence_gate=confidence_gate,
preprocess=data_preprocess)
else:
raise NotImplementedError()
# teacher moving average
if configs["TrainingConfig"]["ema"]:
# perform moving average for running mean and running var of batch norm
target_bn_statistics = get_bn_statistics(student_backbone.state_dict())
bn_statistics_moving_average(source_bn_statistics, target_bn_statistics, epoch,
configs["TrainingConfig"]["total_epochs"],
tao_begin=0.95, tao_end=0.99)
# perform moving average for model weights
exponential_moving_average(teacher_backbone, student_backbone, epoch,
configs["TrainingConfig"]["total_epochs"],
tao_begin=configs["TrainingConfig"]["tao_begin"],
tao_end=configs["TrainingConfig"]["tao_end"])
exponential_moving_average(teacher_classifier, student_classifier, epoch,
configs["TrainingConfig"]["total_epochs"],
tao_begin=configs["TrainingConfig"]["tao_begin"],
tao_end=configs["TrainingConfig"]["tao_end"])
student_backbone.load_state_dict(teacher_backbone.state_dict())
student_classifier.load_state_dict(teacher_classifier.state_dict())
if configs["TrainingConfig"]["ema"]:
if source_bn_statistics is not None:
load_bn_statistics(student_backbone, source_bn_statistics)
for s in source_domains:
test_per_domain(s, test_dataloaders[s], student_backbone,
student_classifier, epoch, writer=writer, num_classes=num_classes,
top_5_accuracy=(num_classes > 10))
target_acc = test_per_domain(configs["DAConfig"]["target_domain"], target_test_dloader, student_backbone,
student_classifier, epoch, writer=writer, num_classes=num_classes,
top_5_accuracy=(num_classes > 10))
if epoch >= 1 and target_acc > best_acc:
best_acc = target_acc
best_backbone = copy.deepcopy(student_backbone.state_dict())
best_classifier = copy.deepcopy(student_classifier.state_dict())
if target_bn_statistics is not None:
load_bn_statistics(student_backbone, target_bn_statistics)
backbone_scheduler.step()
classifier_scheduler.step()
if args.writer == "wandb":
writer.finish()
# rebuild source domain
source_domains.append(target_domain)
# reinit source and target model
if teacher_backbone is not None:
teacher_backbone.load_state_dict(best_backbone)
teacher_classifier.load_state_dict(best_classifier)
student_backbone.load_state_dict(best_backbone)
student_classifier.load_state_dict(best_classifier)
if __name__ == "__main__":
time_start = time.time()
main(args, configs)
time_elapsed = time.time() - time_start
print(f'\ntime elapsed: {time_elapsed:.2f} seconds')