-
-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathfastaidatasets.jl
302 lines (277 loc) · 14.8 KB
/
fastaidatasets.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
struct FastAIDataset
name::Any
subfolder::Any
extension::Any
description::Any
checksum::Any
datadepname::Any
subpath::Any
size::Any
end
struct TSClassificationDataset
name
extension
description
checksum
datadepname
size
end
struct MonashRegressionDataset
name
dset_id
extension
description
checksum
datadepname
splits
size
end
const ROOT_URL_FastAI = "https://s3.amazonaws.com/fast-ai-"
const ROOT_URL_TSClassification = "http://www.timeseriesclassification.com/Downloads"
const ROOT_URL_MonashRegression = "https://zenodo.org/record/"
function FastAIDataset(name, subfolder, checksum = "";
extension = "tgz",
description = "",
datadepname = name,
subpath = name,
size = "???")
return FastAIDataset(name, subfolder, extension, description, checksum, datadepname,
subpath, size)
end
function TSClassificationDataset(
name, checksum="";
extension="zip",
description="",
datadepname="",
size="???")
return TSClassificationDataset(name, extension, description, checksum, datadepname, size)
end
function MonashRegressionDataset(
name, dset_id, checksum = "";
extension = "ts", description = "", splits = ["TRAIN", "TEST"],
datadepname="", size="???")
return MonashRegressionDataset(name, dset_id, extension, description, checksum, datadepname, splits, size)
end
const DESCRIPTIONS = Dict(
"imagenette" => "A subset of 10 easily classified classes from Imagenet: tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute",
"imagewoof" => "A subset of 10 harder to classify classes from Imagenet (all dog breeds): Australian terrier, Border terrier, Samoyed, beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback, dingo, golden retriever, Old English sheepdog",
"food-101" => "101 food categories, with 101,000 images; 250 test images and 750 training images per class. The training images were not cleaned. All images were rescaled to have a maximum side length of 512 pixels.",
"ECG5000" => "The original dataset for \"ECG5000\" is a 20-hour long ECG downloaded from Physionet. The name is BIDMC Congestive Heart Failure Database(chfdb) and it is record \"chf07\".",
"AtrialFibrillation" => "This is a physionet dataset of two-channel ECG recordings has been created from data used in the Computers in Cardiology Challenge 2004, an open competition with the goal of developing automated methods for predicting spontaneous termination of atrial fibrillation (AF).",
"NATOPS" => "The data is generated by sensors on the hands, elbows, wrists and thumbs. The data are the x,y,z coordinates for each of the eight locations. ",
"AppliancesEnergy" => "The goal of this dataset is to predict total energy usage in kWh of a house.",
)
const DATASETCONFIGS = [
# imageclas
FastAIDataset("CUB_200_2011", "imageclas",
"0c685df5597a8b24909f6a7c9db6d11e008733779a671760afef78feb49bf081",
size = "1GiB"),
FastAIDataset("bedroom", "imageclas",
"7c95250ccb177c582f602c08f239c71f7a70512729d2e078925261cf5e349f5d",
size = "4.25GiB"),
FastAIDataset("caltech_101", "imageclas",
"af6ece2f339791ca20f855943d8b55dd60892c0a25105fcd631ee3d6430f9926",
size = "126MiB", subpath = "101_ObjectCategories"),
FastAIDataset("cifar10", "imageclas",
"637c5814e11aefcb6ee76d5f59c67ddc8de7f5b5077502a195b0833d1e3e4441"),
FastAIDataset("cifar100", "imageclas",
"085ac613ceb0b3659c8072143ae553d5dd146b3c4206c3672a56ed02d0e77d28"),
FastAIDataset("food-101", "imageclas",
"abc3d6b03a9886fdea6d2a124cf88e22a99dfdb03085b2478be97de3f8e4679f",
size = "5.3GB", description = DESCRIPTIONS["food-101"]),
FastAIDataset("imagenette-160", "imageclas",
"1bd650bc16884ca88e4f0f537ed8569b1f8d7ae865d37eba8ecdd87d9cd9dcfa",
size = "1.45GiB", description = DESCRIPTIONS["imagenette"]),
FastAIDataset("imagenette-320", "imageclas", description = DESCRIPTIONS["imagenette"]),
FastAIDataset("imagenette", "imageclas", description = DESCRIPTIONS["imagenette"]),
FastAIDataset("imagenette2-160", "imageclas",
"64d0c4859f35a461889e0147755a999a48b49bf38a7e0f9bd27003f10db02fe5",
description = DESCRIPTIONS["imagenette"]),
FastAIDataset("imagenette2-320", "imageclas",
"569b4497c98db6dd29f335d1f109cf315fe127053cedf69010d047f0188e158c",
description = DESCRIPTIONS["imagenette"]),
FastAIDataset("imagenette2", "imageclas",
"6cbfac238434d89fe99e651496f0812ebc7a10fa62bd42d6874042bf01de4efd",
description = DESCRIPTIONS["imagenette"]),
FastAIDataset("imagewang-160", "imageclas",
"a0d360f9d8159055b3bf2b8926a51d19b2f1ff98a1eef6034e4b891c59ca3f1a",
size = "182MiB"),
FastAIDataset("imagewang-320", "imageclas",
"fd53301c335aa46f0f4add68dd471cd0b8b66412382cc36f5f510d0a03fb4d9d",
size = "639MiB"),
FastAIDataset("imagewang", "imageclas"),
FastAIDataset("imagewoof-160", "imageclas",
"a0d360f9d8159055b3bf2b8926a51d19b2f1ff98a1eef6034e4b891c59ca3f1a",
description = DESCRIPTIONS["imagewoof"]),
FastAIDataset("imagewoof-320", "imageclas", description = DESCRIPTIONS["imagewoof"]),
FastAIDataset("imagewoof", "imageclas", description = DESCRIPTIONS["imagewoof"]),
FastAIDataset("imagewoof2-160", "imageclas",
"b5ffa16037e07f60882434f55b7814a3d44483f2a484129f251604bc0d0f8172",
description = DESCRIPTIONS["imagewoof"]),
FastAIDataset("imagewoof2-320", "imageclas",
"7db6120fdb9ae079e26346f89e7b00d7f184f8137791609b97fd0405d3f92305",
description = DESCRIPTIONS["imagewoof"], size = "313MB"),
FastAIDataset("imagewoof2", "imageclas",
"de3f58c4ea3e042cf3f8365fbc699288cfe1d8c151059040d181c221bd5a55b8",
description = DESCRIPTIONS["imagewoof"], size = "1.25GiB"),
FastAIDataset("mnist_png", "imageclas",
"9e18edaa3a08b065d8f80a019ca04329e6d9b3e391363414a9bd1ada30563672"),
FastAIDataset("mnist_var_size_tiny", "imageclas",
"8a0f6ca04c2d31810dc08e739c7fa9b612e236383f70dd9fc6e5a62e672e2283"),
FastAIDataset("oxford-102-flowers", "imageclas"),
FastAIDataset("oxford-iiit-pet", "imageclas"),
FastAIDataset("stanford-cars", "imageclas"),
# nlp
FastAIDataset("ag_news_csv", "nlp",
"9a8c300eabb45750237fcc669f61cb8a3448f3ef6f6098e1ce340e444f6872be",
size = "11MB"),
FastAIDataset("amazon_review_full_csv", "nlp",
"4af62eeee139d0142e0747340b68646d23483d9475c33ea0641ee9175b423443",
size = "600MB"),
FastAIDataset("amazon_review_polarity_csv", "nlp",
"d2a3ee7a214497a5d1b8eaed7c8d7ba2737de00ada3b0ec46243983efa100361",
size = "600MB"),
FastAIDataset("dbpedia_csv", "nlp",
"42db5221ddedddb673a4cabcc5f3a7d869714c878bcfe4ba94b29d14aa38e417",
size = "65MB"),
FastAIDataset("giga-fren", "nlp",
"11c97af99471fe641f210d8b86ccccf3b298b9199853987ee53892d709d7ca6b",
size = "2.4GB"),
FastAIDataset("imdb", "nlp",
"d501018afa17aee9fa1ebe8ac29859a5609980e13dc6e611aa21567cc357351f",
size = "140MB"),
FastAIDataset("sogou_news_csv", "nlp",
"6b77fc935561d339b82aa552d7e31ea59eff492a494920579b3ce70604efb5c2",
size = "360MB"),
FastAIDataset("wikitext-103", "nlp",
"27b89e94d98a9f9db74588a2e75b04378ee21569ce55d329d3e73e27d0952551",
size = "181MB"),
FastAIDataset("wikitext-2", "nlp",
"4e39df0e84453ae2f3d34333de2a9d8e57560a7a6e621f13e11dc21241320074",
size = "4MB"),
FastAIDataset("yahoo_answers_csv", "nlp",
"2d4277855faf8b35259009425fa8f7fe1888b5644b47165508942d000f4c96ae",
size = "305MB"),
FastAIDataset("yelp_review_full_csv", "nlp",
"56006b0a17a370f1e366504b1f2c3e3754e4a3dda17d3e718a885c552869a559",
size = "187MB"),
FastAIDataset("yelp_review_polarity_csv", "nlp",
"528f22e286cad085948acbc3bea7e58188416546b0e364d0ae4ca0ce666abe35",
size = "158MB"),
# imagelocal
FastAIDataset("biwi_head_pose", "imagelocal",
"9cfefd53ed85f824c5908bc6eb21fc719583eec57a7df1d8141d3156645693cf",
size = "430MiB"),
FastAIDataset("camvid", "imagelocal",
"11db05fc3ee727fb17de7499380b20258a41beeb1002a2aee2c2244a472a4a45",
size = "571MB"),
FastAIDataset("pascal-voc", "imagelocal",
"10fc13a659da20fdd8302dd394d88ca7e4e60e69fd8a5212c3e3357964a58215",
size = "4.3GB"),
FastAIDataset("pascal_2007", "imagelocal"),
FastAIDataset("pascal_2012", "imagelocal"),
FastAIDataset("siim_small", "imagelocal"),
FastAIDataset("skin-lesion", "imagelocal"),
FastAIDataset("tcga-small", "imagelocal"),
# sample
FastAIDataset("adult_sample", "sample",
"47ecd1848abc976643ee82d8788b712e3006d629bbc7554efa1077a91579e99e",
size = "3.8MB"),
FastAIDataset("biwi_sample", "sample"),
FastAIDataset("camvid_tiny", "sample",
"cd42a9bdd8ad3e0ce87179749beae05b4beb1ae6ab665841180b1d8022fc230b"),
FastAIDataset("dogscats", "sample",
"b79c0a5e4aa9ba7a0b83abbf61908c61e15bed0e5b236e86a0c4a080c8f70d7c",
size = "800MiB"),
FastAIDataset("human_numbers", "sample"),
FastAIDataset("imdb_sample", "sample",
"8e776d995296136b3f9a3cf001796d886cb0b60e86877ce71c7abbdc3c247341",
size = "4KB"),
FastAIDataset("mnist_sample", "sample",
"b373a14f282298aeba0f7dd56b7cdb6c2401063d4f118c39c54982907760bd38",
size = "3MB"),
FastAIDataset("mnist_tiny", "sample",
"0d1fedf86243931aa3fc065d2cf4ffab339a972958d8594ae993ee32bd8e15b9",
size = "300KB"),
FastAIDataset("movie_lens_sample", "sample"),
FastAIDataset("planet_sample", "sample",
"f2509212bb2dcdc147423b164564f2e63cae1d1db0b504166e5b92cfbcbb3b4c",
size = "14.8MB"),
FastAIDataset("planet_tiny", "sample",
"41a5fdd82db1c9fb2cff17e1a1270102414a25a34b21b770f953d28483961edb",
size = "1MB"),
# coco
FastAIDataset("coco_sample", "coco", "56960c0ac09ff35cd8588823d37e1ed0954cb88b8bfbd214a7763e72f982911c", size="3GB"),
FastAIDataset("train2017", "coco", datadepname="coco-train2017", extension="zip"),
FastAIDataset("val2017", "coco", datadepname="coco-val2017", extension="zip"),
FastAIDataset("test2017", "coco", datadepname="coco-test2017", extension="zip"),
FastAIDataset("unlabeled2017", "coco", datadepname="coco-unlabeled2017", extension="zip"),
FastAIDataset("image_info_test2017", "coco", datadepname="coco-image_info_test2017", extension="zip"),
FastAIDataset("image_info_unlabeled2017", "coco", datadepname="coco-image_info_unlabeled2017", extension="zip"),
FastAIDataset("annotations_trainval2017", "coco", datadepname="coco-annotations_trainval2017", extension="zip"),
FastAIDataset("stuff_annotations_trainval2017", "coco", datadepname="coco-stuff_annotations_trainval2017", extension="zip"),
FastAIDataset("panoptic_annotations_trainval2017", "coco", datadepname="coco-panoptic_annotations_trainval2017", extension="zip"),
# timeseries
TSClassificationDataset("ECG5000", "41f6de20ac895e9ce31753860995518951f1ed42a405d0e51c909d27e3b3c5a4", description = DESCRIPTIONS["ECG5000"] ,datadepname="ecg5000", size="10MB" ),
TSClassificationDataset("AtrialFibrillation", "218abad67d58190a6daa1a27f4bd58ace6e18f80fb59fb2c7385f0d2d4b411a2", description = DESCRIPTIONS["AtrialFibrillation"], datadepname = "atrial", size = "226KB"),
TSClassificationDataset("NATOPS", "57a8debeedadad7764bfa9c87b4300bd64a999ef95a98a6ee07a830c41de4aa1", description = DESCRIPTIONS["NATOPS"], datadepname = "natops", size = "5.1MB"),
# monash regression datasets
MonashRegressionDataset("AppliancesEnergy", 3902637, ["bbc65fcfa5c01655bb0ec7d558335d44b9c81979d7246f485bbc95a9759a5bff", "0e73676156bdce593059cd03785db9fd5616c1620ba87893b0f0903ef80f2248"],
description = DESCRIPTIONS["AppliancesEnergy"], datadepname="appliances_energy", size = "15MB"),
]
const DATASETS = [d.datadepname for d in DATASETCONFIGS]
const DATASETS_IMAGECLASSIFICATION = vcat(
[d.datadepname for d in DATASETCONFIGS if ((typeof(d) == FastAIDataset) && d.subfolder == "imageclas")],
["mnist_sample", "mnist_tiny", "dogscats"],
)
function DataDeps.DataDep(d::FastAIDataset)
return DataDep("fastai-$(d.datadepname)",
"""
"$(d.name)" from the fastai dataset repository (https://course.fast.ai/datasets)
$(d.description)
Download size: $(d.size)
""",
"$(ROOT_URL_FastAI)$(d.subfolder)/$(d.name).$(d.extension)",
d.checksum,
post_fetch_method=function (f)
DataDeps.unpack(f)
extracted = readdir(pwd())[1]
temp = mktempdir()
mv(extracted, temp, force=true)
mv(temp, pwd(), force=true)
end,
)
end
function DataDeps.DataDep(d::TSClassificationDataset)
return DataDep(
"fastai-$(d.datadepname)",
"""
"$(d.name)" from the UEA and UCR time reries classification repository (http://timeseriesclassification.com/)
$(d.description)
Download size: $(d.size)
""",
"$(ROOT_URL_TSClassification)/$(d.name).$(d.extension)",
d.checksum,
post_fetch_method=function (f)
DataDeps.unpack(f)
end,
)
end
function DataDeps.DataDep(d::MonashRegressionDataset)
remote_paths = [ "https://zenodo.org/record/$(d.dset_id)/files/$(d.name)_$split.ts" for split in d.splits]
return DataDep(
"fastai-$(d.datadepname)",
"""
"$(d.name)" from the Monash, UEA & UCR Time Series Extrinsic Regression Repository (http://tseregression.org)
$(d.description)
Download size: $(d.size)
""",
remote_paths,
d.checksum
)
end
function initdatadeps()
for d in DATASETCONFIGS
DataDeps.register(DataDep(d))
end
end