-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathSpecification.cry
406 lines (358 loc) · 11.6 KB
/
Specification.cry
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
// Cryptol AES Implementation
//
// @copyright Galois Inc.
// @author Nichole Schimanski <[email protected]>
// @editor Brian Huffman
// @author Marcella Hastings <[email protected]>
// www.cryptol.net
//
//
// References
// [FIPS-197u1]: Morris J. Dworkin, Elaine B. Barker, James R. Nechvatal,
// James Foti, Lawrence E. Bassham, E. Roback, and James F. Dray Jr.
// Advanced Encryption Standard (AES). Federal Inf. Process. Stds. (NIST FIPS)
// 197, update 1. May 2023.
//
module Primitive::Symmetric::Cipher::Block::AES::Specification where
import Common::GF28 as GF28
private type GF28 = GF28::GF28
parameter
// This constraint enforces the standard key sizes of 128, 192, and
// 256-bits. [FIPS-197u1] Sections 1, 5, and 6.1.
type KeySize' : #
type constraint (fin KeySize', KeySize' % 64 == 0, KeySize' / 64 >= 2,
KeySize' / 64 <= 4)
/**
* The AES implementation uses the `Mode` type to compute other parameters.
* The mode corresponds directly to the key size:
* Mode 0 = 128 bits; Mode 1 = 192 bits; Mode 2 = 256 bits
*/
type Mode = (KeySize / 64) - 2
// The following section encodes [FIPS-197u1] Section 5, Table 3
/** Key length: number of 32 bit words in the key */
type Nk = 4 + 2 * Mode
/** Number of rounds */
type Nr = 6 + Nk
/**
* The number of words in the state is generic for the underlying Rijndael
* algorithm, but in the standard it is fixed to 4.
* [FIPS-197u1] Section 5.
*/
type Nb = 4
// Make `KeySize` and `BlockSize` accessible outside the module.
// This also lets us use AES as an instantiation of `CipherInterface`
type KeySize = KeySize'
type BlockSize = 128
/**
* These are referred to as Cipher and InvCipher in [FIPS-197u1].
* See Algorithm 1 and Algorithm 3.
*/
encrypt : [KeySize] -> [BlockSize] -> [BlockSize]
encrypt k = cipher (keyExpansion k)
decrypt : [KeySize] -> [BlockSize] -> [BlockSize]
decrypt k = invCipher (keyExpansion k)
/**
* This property must be true for each instantiation.
* With high probability, it will be extremely slow to prove.
*
* ```repl
* :check aesIsCorrect
* ```
*/
property aesIsCorrect k pt = decrypt k (encrypt k pt) == pt
// The following methods should not be used in general. They are public
// to support a confusing endianness issue in the implementation of
// AES-GCM-SIV.
type ExpandedKey = KeySchedule
encryptWithSchedule : ExpandedKey -> [BlockSize] -> [BlockSize]
encryptWithSchedule = cipher
/**
* The algorithms for AES block ciphers are performed on a 4x4 array of bytes.
* [FIPS-197u1] Section 3.4.
*/
type State = [4][Nb]GF28
/**
* In the specifications for AES, the first step is to copy the input array
* of 16 bytes into the state array.
*
* [FIPS-197u1] Section 3.4, Equation 3.6.
*/
msgToState : [128] -> State
msgToState msg = transpose (split (split msg))
/**
* After the state array is transformed, its final value is copied to the
* output array of bytes.
*
* [FIPS-197u1] Section 3.4, Equation 3.7.
*/
stateToMsg : State -> [128]
stateToMsg st = join (join (transpose st))
/**
* This demonstrates the property in [FIPS-197u1] Section 3.4, Figure 1.
* Note that we don't ever need this property in the execution of AES,
* but it should hold true anyway.
*
* ```repl
* :prove ioInverts
* ```
*/
property ioInverts msg = stateToMsg (msgToState msg) == msg
type SBox = [256] GF28
/**
* The substitution table as given in Table 4. The table is pulled out here
* for efficiency, letting us compute the table once per access in AES.
*/
sboxTable : SBox
private sboxTable = [ transform (GF28::inverse b) | b <- [0 .. 255] ] where
// Equation 5.3.
transform b = GF28::add [b, (b >>> 4), (b >>> 5), (b >>> 6), (b >>> 7), c]
// The constant byte {01100011}.
c = 0x63
/**
* SBox: A non-linear substitution table for AES.
* [FIPS-197u1] Section 5.1.1.
*
* `GF28::inverse b` corresponds to Equation 5.2.
*/
sbox : GF28 -> GF28
sbox b = sboxTable @ b
/**
* Sbox example from p. 14
* ```repl
* :prove sBox53
* ```
*/
property sBox53 = sbox 0x53 == 0xed
/**
* The substitution table as given in Table 6. The table is pulled out here
* for efficiency, letting us compute the table once per access in AES.
*/
sboxInvTable : SBox
private sboxInvTable = [ GF28::inverse (transformInv b) | b <- [0 .. 255] ] where
transformInv b = GF28::add [(b >>> 2), (b >>> 5), (b >>> 7), d]
d = 0x05
/**
* Inverted substitution table for AES.
* [FIPS-197u1] Section 5.3.2.
*/
sboxInv : GF28 -> GF28
sboxInv b = sboxInvTable @ b
/**
* S-box inversion must be correctly defined.
* ```repl
* :prove sBoxInverts
* ```
*/
property sBoxInverts b = sboxInv (sbox b) == b
/**
* The round key is a block that is usually represented as a sequence of four words.
* [FIPS-197u1] Section 5.
*
* A word is a sequence of four bytes. [FIPS-197u1] Section 3.5.
*/
type RoundKey = [4][4]GF28
/** The keys for all the rounds */
type KeySchedule = [Nr+1]RoundKey
/**
* The general function for executing AES with 128-, 192-, or 256-bit keys.
*
* Corresponds to [FIPS-197u1] Section 5.1, Algorithm 1.
*
* In the spec, the three inputs to `Cipher` are the input data, the number of
* rounds `Nr`, and the round keys `w`. In this implementation, we don't explicitly
* pass `Nr` as a parameter; instead it's defined as a type above. We also
* switch the order of the input and keys.
*/
cipher: KeySchedule -> [128] -> [128]
cipher w pt = stateToMsg final_state // Line 13
where
// Lines 2-3
state0 = AddRoundKey (w @ 0) (msgToState pt)
// Line 4
state4 = foldl transform state0 (w @@ [1 .. (Nr - 1)])
// Lines 5-8
transform state word = AddRoundKey word (MixColumns (ShiftRows (SubBytes state)))
// Lines 10-12
final_state = AddRoundKey (w @ `Nr) (ShiftRows (SubBytes (state4)))
/**
* SubBytes applies an invertible, non-linear transformation to the state.
* [FIPS-197u1] Section 5.1.1.
*
* It does so by applying the AES S-box independently to each byte in the state.
*/
SubBytes : State -> State
SubBytes state = [ [ sbox b | b <- row ] | row <- state ]
/**
* ShiftRows transforms the state by cycling the last three rows.
* [FIPS-197u1] Section 5.1.2.
*/
ShiftRows : State -> State
ShiftRows state = [ row <<< i | row <- state | i : [2] <- [0 .. 3] ]
/**
* MixColumns multiplies the state columns by a fixed matrix.
* [FIPS-197u1] Section 5.1.3.
*/
MixColumns : State -> State
MixColumns state = GF28::matrixMult m state
where m = [ [2,3,1,1] >>> i | i <- [0 .. 3] ]
/**
* AddRoundKey combines the state with a round key via the
* bitwise XOR operator
* [FIPS-197u1] Section 5.1.4
*/
AddRoundKey : RoundKey -> State -> State
AddRoundKey w state = w ^ state
/**
* Key expansion depends on 10 fixed words denoted by `Rcon`.
* [FIPS-197u1] Section 5.2, Table 5.
*
* This function requires `1 <= j <= 10`.
*/
Rcon : [8] -> [4]GF28
Rcon j = constants @ (j - 1) where
constants = [
[0x01, 0x00, 0x00, 0x00],
[0x02, 0x00, 0x00, 0x00],
[0x04, 0x00, 0x00, 0x00],
[0x08, 0x00, 0x00, 0x00],
[0x10, 0x00, 0x00, 0x00],
[0x20, 0x00, 0x00, 0x00],
[0x40, 0x00, 0x00, 0x00],
[0x80, 0x00, 0x00, 0x00],
[0x1b, 0x00, 0x00, 0x00],
[0x36, 0x00, 0x00, 0x00]
]
/**
* The value of the left-most byte of `Rcon[j]` in polynomial form is `x^(j-1)`.
* [FIPS-197u1] Section 5.2.
* ```repl
* :prove RconIsExponentiation
* ```
*/
RconIsExponentiation : [8] -> Bit
property RconIsExponentiation j = (1 <= j) && (j <= 10) ==>
(Rcon j)@0 == GF28::pow <| x |> (j-1)
/**
* Transformation on words for key expansion.
* [FIPS-197u1] Equation 5.10.
*/
RotWord : [4]GF28 -> [4]GF28
RotWord [a0, a1, a2, a3] = [a1, a2, a3, a0]
/**
* Transformation on words for key expansion.
* [FIPS-197u1] Equation 5.11.
*/
SubWord : [4]GF28 -> [4]GF28
SubWord [a0, a1, a2, a3] =
[ sbox a0, sbox a1, sbox a2, sbox a3 ]
/**
* KeyExpansion() routine.
* [FIPS-197u1] Algorithm 2.
*
* The algorithm in the spec returns the key as a single object `w`. For
* convenience at the point of use, we split it into three parts, separating
* the first and last keys from the main set of round keys:
* `w_0, [w_1, ..., w_{Nr-1}], w_{Nr}`.
*
* In generating the key stream, we use slightly different notation compared
* to the original spec in an attempt at readability.
* `w_{i-1}` is denoted `w_1`, and `w_{i-Nk}` is denoted `w_nk`.
*/
keyExpansion : [32 * Nk] -> [Nr+1]RoundKey
keyExpansion key = keys
where
// Lines 2-6: The first `Nk` words of the expanded key are the key itself
seed : [Nk][4]GF28
seed = split (split key)
// Lines 7-16: A loop to recursively generate the key stream
ws : [inf][4]GF28
ws = seed # [ nextWord i w_1 w_nk
| i <- [ `Nk ... ]
| w_1 <- drop`{Nk-1} ws
| w_nk <- ws
]
// Generate a single word `w_i` in the key stream.
// Each word `w_i` is a function of the previous word `w_{i-1}`
// and the word `Nk` positions earlier `w_{i-Nk}`.
nextWord : [8] ->[4]GF28 -> [4]GF28 -> [4]GF28
nextWord i w_1 w_nk = w_i where
// Lines 8 - 13: Derive the mask `temp`.
temp =
// If `i` is a multiple of `Nk`:
if i % `Nk == 0 then
SubWord (RotWord w_1) ^ Rcon (i / `Nk)
// For AES-256 (Nk == 8), if `i + 4` is a multiple of 8:
else if (`Nk > 6) && (i % `Nk == 4) then
SubWord w_1
// For all other cases:
else w_1
// Line 14: Apply the mask to the `i-Nk`th word to get the `i`th word.
w_i = w_nk ^ temp
// Line 17: Return the resulting key stream
// This breaks the stream into correctly-shaped words
keys = take `{Nr+1} [ transpose g | g <- split ws ]
/**
* The general function for inverting AES with 128-, 192-, or 256-bit keys.
*
* This inverts and reverses the order of the transformations in `cipher`.
* Corresponds to [FIPS-197u1] Section 5.3, Algorithm 3.
*
* In the spec, the three inputs to `InvCipher` are the input data, the number of
* rounds `Nr`, and the round keys `w`. In this implementation, we don't explicitly
* pass `Nr` as a parameter; instead it's defined as a type above. We also
* switch the order of the input and keys.
*/
invCipher: KeySchedule -> [128] -> [128]
invCipher w ct = stateToMsg final_state // Line 13
where
// Lines 2-3
state0 = AddRoundKey (w @ `Nr) ( msgToState ct)
// Line 4
state4 = foldl transform state0 (reverse (w @@ [1 .. (Nr - 1)]))
// Lines 5-8
transform state word = InvMixColumns (AddRoundKey word (InvSubBytes (InvShiftRows state)))
// Lines 10-12
final_state = AddRoundKey (w @ 0) (InvSubBytes (InvShiftRows (state4)))
/**
* Inverts the `ShiftRows` function.
* [FIPS-197u1] Section 5.3.1.
*/
InvShiftRows : State -> State
InvShiftRows state = [ row >>> i | row <- state | i : [2] <- [0 .. 3] ]
/**
* Inverts the `SubBytes` function.
* [FIPS-197u1] Section 5.3.2
*/
InvSubBytes : State -> State
InvSubBytes state = [ [ sboxInv b | b <- row ] | row <- state ]
/**
* Inverts the `MixColumns` function.
* [FIPS-197u1] Section 5.3.3.
*/
InvMixColumns : State -> State
InvMixColumns state = GF28::matrixMult m state
where m = [[0x0e, 0x0b, 0x0d, 0x09] >>> i | i <- [0 .. 3] ]
/**
* SubBytes inversion must be correctly defined.
* ```repl
* :prove subBytesInverts
* ```
*/
subBytesInverts : State -> Bool
property subBytesInverts s = InvSubBytes (SubBytes s) == s
/**
* ShiftRows inversion must be correctly defined.
* ```repl
* :prove shiftRowsInverts
* ```
*/
shiftRowsInverts : State -> Bool
property shiftRowsInverts s = InvShiftRows (ShiftRows s) == s
/**
* MixColumns inversion must be correctly defined.
* ```repl
* :check mixColumnsInverts
* ```
*/
mixColumnsInverts : State -> Bool
property mixColumnsInverts s = InvMixColumns (MixColumns s) == s