Skip to content

Latest commit

 

History

History
 
 

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

English | 简体中文

FSANet C++ Deployment Example

This directory provides examples that infer.cc fast finishes the deployment of FSANet on CPU/GPU and GPU accelerated by TensorRT.

Before deployment, two steps require confirmation

Taking the CPU inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 1.0.2 or above (x.x.x>=1.0.2), or the nightly built version is required to support this model.

mkdir build
cd build
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above 
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

# Download the official converted FSANet model files and test images 
wget https://bj.bcebos.com/paddlehub/fastdeploy/fsanet-var.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/headpose_input.png
# CPU inference
./infer_demo --model fsanet-var.onnx --image headpose_input.png --device cpu
# GPU inference
./infer_demo --model fsanet-var.onnx --image headpose_input.png --device gpu
# TensorRT Inference on GPU
./infer_demo --model fsanet-var.onnx --image headpose_input.png --device gpu --backend trt

The visualized result after running is as follows

The above command works for Linux or MacOS. For SDK use-pattern in Windows, refer to:

FSANet C++ Interface

FSANet Class

fastdeploy::vision::headpose::FSANet(
        const string& model_file,
        const string& params_file = "",
        const RuntimeOption& runtime_option = RuntimeOption(),
        const ModelFormat& model_format = ModelFormat::ONNX)

FSANet model loading and initialization, among which model_file is the exported ONNX model format. Parameter

  • model_file(str): Model file path
  • params_file(str): Parameter file path. Only passing an empty string when the model is in ONNX format
  • runtime_option(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
  • model_format(ModelFormat): Model format. ONNX format by default

Predict Function

FSANet::Predict(cv::Mat* im, HeadPoseResult* result)

Model prediction interface. Input images and output head pose prediction results.

Parameter

  • im: Input images in HWC or BGR format
  • result: Head pose prediction results. Refer to Vision Model Prediction Results for the description of HeadPoseResult

Class Member Variable

Users can modify the following pre-processing parameters to their needs, which affects the final inference and deployment results

  • size(vector<int>): This parameter changes the size of the resize used during preprocessing, containing two integer elements for [width, height] with default value [112, 112]