forked from luka-group/ODDA-Data-Augmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_nll.py
671 lines (554 loc) · 32.6 KB
/
train_nll.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
# EPiDA Easy Plug-in Data Augumentation
import argparse
import os
import numpy as np
import re
import random
from tqdm import tqdm
import wandb
from datetime import datetime, timedelta
import pdb
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from transformers import BertTokenizer, BertModel, XLNetTokenizer, AutoTokenizer, AutoModel
from transformers import AdamW, BertForSequenceClassification,XLNetForSequenceClassification,AutoModelForSequenceClassification
from sklearn.utils import shuffle
from sklearn.metrics import accuracy_score,f1_score,classification_report
# from utils import SoftCrossEntropy,FocalLoss
from nlp_aug import eda_4
import nlpaug.augmenter.char as nac
import nlpaug.augmenter.word as naw
import nlpaug.augmenter.sentence as nas
from eda import eda,epda,epda_bert, eda_nll, glitter, large_loss
from utils import move_to_device, setup_seed, get_only_chars
from model_nll import *
from dataset import *
def update_ema_variables(model, ema_model, alpha, global_step):
# Use the true average until the exponential average is more correct
# alpha = min(1 - 1 / (global_step + 1), alpha)
for ema_param, param in zip(ema_model.parameters(), model.parameters()):
ema_param.data.mul_(alpha).add_(param.data, alpha=1 - alpha)
device = torch.device('cuda')
def do_aug(inputs,labels,aug_method,get_embed_fn,model=None,num_aug=1,epda_engine="EDA"):
if aug_method == 'EDA':
aug_fn = eda_4
elif aug_method == 'EEDA':
aug_fn = eda
elif aug_method == 'EPDA':
aug_fn = epda_bert
elif aug_method == "glitter":
aug_fn = glitter
elif aug_method == "large_loss":
aug_fun = large_loss
# print(len(inputs),'vs',len(labels))
Xs,Ys= [],[]
for i in range(len(inputs)):
if aug_method == 'EPDA':
translator = None
if epda_engine == 'CWE':
nlp_auger = naw.ContextualWordEmbsAug(action='insert',device='cuda')
elif epda_engine == 'BT':
nlp_auger = naw.BackTranslationAug(device='cuda')
else:
nlp_auger = None
# if labels[i]==0 or labels[i]==2:
# # print("Dont aug")
# augedtxts = [inputs[i]]
# else:
MIX_UP = False # TQ: TODO!
augedtxts,_ = aug_fn(txt=inputs[i],label=labels[i],num_aug=num_aug,model=model,translator=translator,
engine=epda_engine,alpha=args.alpha_da,mix_up=MIX_UP,get_embed_fn=get_embed_fn,loss_fn=nn.CrossEntropyLoss(),nlp_auger = nlp_auger)
Xs+=augedtxts
# append with the same labels
for j in range(len(augedtxts)):
Ys.append(labels[i])
elif aug_method == "glitter":
augedtxts = glitter(inputs[i], labels[i], num_aug=num_aug, get_embed_fn=get_embed_fn, model=model)
Xs+=augedtxts
for j in range(len(augedtxts)):
Ys.append(labels[i])
elif aug_method == "large_loss":
augedtxts = large_loss(inputs[i], labels[i], num_aug=num_aug, get_embed_fn=get_embed_fn, model=model)
Xs+=augedtxts
for j in range(len(augedtxts)):
Ys.append(labels[i])
else:
txts = aug_fn(inputs[i],num_aug=num_aug)
for txt in txts:
embed = get_embed_fn(txt)
# print("Size",embed.size())
Xs.append(embed)
label_tensor = torch.zeros(1)
label_tensor[0] = labels[i]
label_tensor = label_tensor.long()
Ys.append(label_tensor)
return Xs,Ys
def train(train_data_loader,test_data_loader,model,args,TOKENIZER,run_id=0,ema_model=None):
EPOCHES = args.basic_epoch
EPOCHES += args.da_epoch
if args.method == "baseline" and args.da_epoch > 0:
print("warning, da_epoch should be 0 for baseline models.")
print("Update EPOCHES to",EPOCHES)
input_dir = train_data_loader.dataset.dir
devices = [i % args.n_gpu for i in range(args.n_model)]
max_f1_score = 0.0
trained_iter = 0
# UPDATED = False
optimizer = AdamW(model.parameters(), lr=args.lr, eps=1e-8, weight_decay=1e-3)
# optimizer = Adam(model.parameters(), lr=LR, eps=1e-8, weight_decay=1e-3)
# reset the dataset.
train_data_loader.dataset.reset()
IS_AUG_TRAINING = False
for epoch in tqdm(range(EPOCHES)):
model.train()
if args.method not in ["baseline", "baseline_NLL"] and epoch % args.refresh_aug_epoch==0 and epoch>=args.basic_epoch:
# need augmentation
print(f"Do data augmentation at epoch {epoch}")
lines = open(input_dir,'r').readlines()
Xs,Ys=[],[]
count = [0]*args.num_classes
for line in lines:
y,x = line.split('\t')
y = int(y)
# if count[y] >= int(434*int(data_split)*2):
# continue
count[y] += 1
x = x[:-1]
x = get_only_chars(x)
Xs.append(x)
Ys.append(y)
if "EDA" in args.method:
inputs, labels = eda_nll(Xs, Ys, args)
elif "EPDA" in args.method: # EPDA, EPDA_NLL, EPDA_EMA
inputs,labels = do_aug(Xs,Ys,"EPDA",get_embed_fn=TOKENIZER,model=model,num_aug=args.num_aug)
elif "glitter" in args.method: # Glitter for EDA
inputs,labels = do_aug(Xs,Ys,"glitter",get_embed_fn=TOKENIZER,model=model,num_aug=args.num_aug)
elif "large_loss" in args.method:
inputs,labels = do_aug(Xs,Ys,"large_loss",get_embed_fn=TOKENIZER,model=model,num_aug=args.num_aug)
elif "reweight" in args.method:
inputs, labels = eda_nll(Xs, Ys, args)
else:
assert NotImplementedError
if args.syn_noise:
# add noise to the augmented data
flip_idx = np.random.rand(len(labels)) < args.syn_noise_ratio
get_new_idx = lambda x:list(range(0, x)) + list(range(x+1, args.num_classes))
print("before adding noise", labels[:30])
labels = [y if not flip_idx[i] else get_new_idx(y)[np.random.randint(args.num_classes-1)] for i,y in enumerate(labels)]
print("after adding noise", labels[:30])
print('Before',len(train_data_loader))
if args.method == "reweight":
# no train_trick can be applied
aug_dataset = ReweightDataset(Xs, Ys, inputs, labels, args.num_aug)
train_data_loader = DataLoader(dataset=aug_dataset,batch_size=args.batch_size//(args.num_aug + 1),collate_fn=Collect_FN_reweight(TOKENIZER),shuffle=True)
else:
if args.train_trick == "mix_training":
# train_data_loader.dataset.reset()
# train_data_loader.dataset.update(Xs + inputs,train_data_loader.dataset.O_Ys + labels)
aug_dataset = BCDataSet(Xs, inputs, Ys, labels)
train_data_loader = DataLoader(dataset=aug_dataset,batch_size=args.batch_size,collate_fn=Collect_FN_BC(TOKENIZER),shuffle=True)
elif args.train_trick == "label_consistency":
aug_dataset = ConsDataset(Xs, inputs, labels, args.num_aug)
train_data_loader = DataLoader(dataset=aug_dataset,batch_size=args.batch_size,collate_fn=Collect_FN_cons(TOKENIZER),shuffle=True)
else:
train_data_loader.dataset.update(inputs,labels)
print("< Update Done.")
print('After',len(train_data_loader))
# UPDATED = True
# finish training on augmented data
# optimizer = AdamW(model.parameters(), lr=LR, eps=1e-8, weight_decay=1e-3)
if args.method in ["EDA_self_teacher_v1", "EDA_self_teacher_v3", "EDA_self_teacher_v4", "EDA_self_teacher_v4_BC"] and IS_AUG_TRAINING == False:
# initialize the teacher. Only once
print("initializing teacher model.")
teacher_model = TextClassificationModel(args)
teacher_model.to(args.teacher_device)
copy_params(model, teacher_model)
teacher_model.eval()
IS_AUG_TRAINING = True
if ema_model is not None:
copy_params(model, ema_model)
for i,batch in enumerate(train_data_loader):
if IS_AUG_TRAINING and args.train_trick == "label_consistency":
batch_ori, batch = (batch[0], batch[1]) # train with augmented data. The original data is batch_ori
if IS_AUG_TRAINING and args.method == "reweight":
batch, batch_syn = (batch[0], batch[1])
batch = move_to_device(batch)
labels = batch["labels"]
optimizer.zero_grad()
if args.method in ["EDA_NLL", "EPDA_NLL", "EDA_NLL_EMA"]: # NLL model
if "is_aug" in batch:
is_aug = batch.pop("is_aug")
output = model(no_nll=not IS_AUG_TRAINING, **batch)
loss = output[0]
logits = output[1] # for TextClassification model, it's the logit. For NLL model, it's a list of two logits.
elif args.method in ["EDA_EMA"]:
if "is_aug" in batch:
is_aug = batch.pop("is_aug")
output = model(**batch)
loss = output[0]
logits = output[1] # for TextClassification model, it's the logit. For NLL model, it's a list of two logits.
elif args.method in ["EDA_NC", "EDA_NLL_NC"]:
outputs = [] # outputs of different models in model_list
labels = batch["labels"]
if "is_aug" in batch:
is_aug = batch.pop("is_aug")
for i in range(args.n_model):
output = model.models[i](**move_to_device(batch, i))
output = tuple([o.to(0) for o in output])
outputs.append(output)
# the normal loss
if IS_AUG_TRAINING:
null_labels = torch.tensor([args.num_classes-1]*len(labels)).to(labels)
labels_logit = F.one_hot(labels, num_classes=args.num_classes) * (1-args.bg_class_prior)\
+ F.one_hot(null_labels) * args.bg_class_prior
if args.train_trick == "mix_training":
labels_logit_ori = F.one_hot(labels, num_classes=args.num_classes)
labels_logit = labels_logit * is_aug.view(len(is_aug), -1) + labels_logit_ori * (~is_aug).view(len(is_aug), -1)
# print(is_aug)
# print(labels_logit)
loss_fn = lambda x,y:torch.mean(torch.sum(-y * F.log_softmax(x, dim=-1), -1))
loss = sum([loss_fn(output[1], labels_logit.to(0)) for k, output in enumerate(outputs)]) / args.n_model # average the loss
# loss = sum([nn.CrossEntropyLoss(output[1], labels_logit.to(k)) for k, output in enumerate(outputs)]) / args.n_model # average the loss
logits = [output[1] for output in outputs]
probs = [F.softmax(logit, dim=-1) for logit in logits]
avg_prob = torch.stack(probs, dim=0).mean(0)
mask = (labels.view(-1) != -1).to(logits[0])
reg_loss = sum([kl_div(avg_prob, prob) * mask for prob in probs]) / args.n_model
reg_loss = reg_loss.sum() / (mask.sum() + 1e-3)
loss = loss + args.alpha_t * reg_loss
else:
loss = sum([output[0] for output in outputs]) / args.n_model
elif args.method == "reweight":
# train with batch ori
output_ori = model(**batch)
logits_ori = output_ori[1]
loss = output_ori[0]
if IS_AUG_TRAINING:
# calculate the loss of the num_aug synthetic data
labels_syn = F.one_hot(batch_syn["labels"], num_classes=args.num_classes).to(0)
batch_syn = move_to_device(batch_syn)
with torch.no_grad():
output_syn = model(**batch_syn) # (batch_size * num_aug, )
b_s = output_syn[1].shape[0] // args.num_aug
syn_loss = torch.sum(labels_syn * F.log_softmax(output_syn[1], dim=-1), -1).view(b_s, args.num_aug)
reweight_factor = F.softmax(syn_loss, dim=-1).view(b_s * args.num_aug)
output_syn = model(**batch_syn)
syn_logits = output_syn[1]
loss_fn = lambda x,y,w:torch.mean(w * torch.sum(- y * F.log_softmax(x, dim=-1), -1))
loss_syn = loss_fn( syn_logits,
labels_syn,
reweight_factor)
loss += loss_syn
elif args.method in ["baseline_NLL"] and epoch >= args.basic_epoch: # baseline + NLL
output = model(no_nll=False, **batch)
loss = output[0]
logits = output[1] # for TextClassification model, it's the logit. For NLL model, it's a list of two logits.
elif args.method in ["EDA_NLL_self", "EDA_self_teacher_v1", "EDA_self_teacher_v3", "EDA_self_teacher_v4", "EDA_self_teacher_v4_BC"]:
if "is_aug" in batch:
is_aug = batch.pop("is_aug")
else:
is_aug = torch.ones(len(labels)).to(bool).to(0)
output = [model(**batch) for i in range(args.n_model)] # outputs given two different dropouts
if args.method in ["EDA_self_teacher_v1", "EDA_self_teacher_v3", "EDA_self_teacher_v4", "EDA_self_teacher_v4_BC"] and IS_AUG_TRAINING:
with torch.no_grad():
logits_teacher = teacher_model(**batch)[1]
logits_teacher = logits_teacher.to(0)
labels_logit = F.softmax(logits_teacher/args.teacher_temperature, dim=-1)
if args.method == "EDA_self_teacher_v4":
labels_logit_ori = F.one_hot(labels, num_classes=args.num_classes)
labels_logit = labels_logit * is_aug.view(len(is_aug), -1) + labels_logit_ori * (~is_aug).view(len(is_aug), -1)
elif args.method == "EDA_self_teacher_v4_BC":
labels_logit_ori = F.one_hot(labels, num_classes=args.num_classes)
# label_logit: for ori, it's ground label. for aug, it's teacher's prediction.
labels_logit = labels_logit * is_aug.view(len(is_aug), -1) + labels_logit_ori * (~is_aug).view(len(is_aug), -1)
# add Background class here.
null_labels = torch.tensor([args.num_classes-1]*len(labels)).to(labels)
labels_logit = labels_logit * (1-args.bg_class_prior)\
+ F.one_hot(null_labels) * args.bg_class_prior # add prior to the background class
else:
labels_logit = F.one_hot(labels, num_classes=args.num_classes)
logits = [out[1] for out in output]
loss_fn = lambda x,y:torch.mean(torch.sum(-y * F.log_softmax(x, dim=-1), -1))
loss = sum([loss_fn(out[1], labels_logit.to(0)) for k, out in enumerate(output)]) / args.n_model # average the loss
# loss = sum([out[0] for out in output]) / args.n_model # average the loss
if IS_AUG_TRAINING:
probs = [F.softmax(logit, dim=-1) for logit in logits]
avg_prob = torch.stack(probs, dim=0).mean(0)
mask = (labels.view(-1) != -1).to(logits[0])
reg_loss = sum([kl_div(avg_prob, prob) * mask for prob in probs]) / args.n_model
reg_loss = reg_loss.sum() / (mask.sum() + 1e-3)
if trained_iter % args.wandb_step == 0:
wandb.log({"CELoss":loss, "Regloss":reg_loss, f'step_{run_id}':trained_iter})
loss = loss + args.alpha_t * reg_loss # new loss
elif args.method == "EDA_self_LS":
if "is_aug" in batch:
is_aug = batch.pop("is_aug")
output = [model(**batch) for i in range(args.n_model)] # outputs given two different dropouts
if IS_AUG_TRAINING:
logits = [out[1] for out in output]
labels_logit_ori = F.one_hot(labels, num_classes=args.num_classes)
all_labels = [torch.tensor([i]*len(labels)).to(labels) for i in range(args.num_classes)]
labels_logit = F.one_hot(labels, num_classes=args.num_classes) * (1-args.label_smoothing)\
+ sum([args.label_smoothing/args.num_classes * F.one_hot(l, num_classes=args.num_classes) for l in all_labels])
labels_logit = labels_logit * is_aug.view(len(is_aug), -1) + labels_logit_ori * (~is_aug).view(len(is_aug), -1)
probs = [F.softmax(logit, dim=-1) for logit in logits]
avg_prob = torch.stack(probs, dim=0).mean(0)
# avg_prob = (1-args.bg_class_prior) * avg_prob + args.bg_class_prior * F.one_hot(null_labels) * args.bg_class_prior
mask = (labels.view(-1) != -1).to(logits[0])
reg_loss = sum([kl_div(avg_prob, prob) * mask for prob in probs[:len(logits)]]) / args.n_model
reg_loss = reg_loss.sum() / (mask.sum() + 1e-3)
# loss = sum([out[0] for out in output]) / args.n_model # average the loss
loss_fn = lambda x,y:torch.mean(torch.sum(-y * F.log_softmax(x, dim=-1), -1))
loss = sum([loss_fn(out[1], labels_logit.to(0)) for k, out in enumerate(output)]) / args.n_model # average the loss
loss = loss + args.alpha_t * reg_loss # new loss
if trained_iter % args.wandb_step == 0:
wandb.log({"CELoss":loss, "Regloss":reg_loss, f'step_{run_id}':trained_iter})
loss = loss + args.alpha_t * reg_loss # new loss
else:
loss = sum([out[0] for out in output]) / args.n_model # average the loss
elif args.method in ["EDA_self_BC"]:
output = [model(**batch) for i in range(args.n_model)] # outputs given two different dropouts
if IS_AUG_TRAINING:
logits = [out[1] for out in output]
null_labels = torch.tensor([args.num_classes-1]*len(labels)).to(labels)
if args.method in ["EDA_self_BC"]:
labels_logit = F.one_hot(labels, num_classes=args.num_classes) * (1-args.bg_class_prior)\
+ F.one_hot(null_labels) * args.bg_class_prior
else:
labels_logit = F.one_hot(labels, num_classes=args.num_classes)
probs = [F.softmax(logit, dim=-1) for logit in logits]
avg_prob = torch.stack(probs, dim=0).mean(0)
# avg_prob = (1-args.bg_class_prior) * avg_prob + args.bg_class_prior * F.one_hot(null_labels) * args.bg_class_prior
mask = (labels.view(-1) != -1).to(logits[0])
reg_loss = sum([kl_div(avg_prob, prob) * mask for prob in probs[:len(logits)]]) / args.n_model
reg_loss = reg_loss.sum() / (mask.sum() + 1e-3)
# loss = sum([out[0] for out in output]) / args.n_model # average the loss
loss_fn = lambda x,y:torch.mean(torch.sum(-y * F.log_softmax(x, dim=-1), -1))
loss = sum([loss_fn(out[1], labels_logit.to(0)) for k, out in enumerate(output)]) / args.n_model # average the loss
loss = loss + args.alpha_t * reg_loss # new loss
if trained_iter % args.wandb_step == 0:
wandb.log({"CELoss":loss, "Regloss":reg_loss, f'step_{run_id}':trained_iter})
loss = loss + args.alpha_t * reg_loss # new loss
else:
loss = sum([out[0] for out in output]) / args.n_model # average the loss
else:
if "is_aug" in batch:
is_aug = batch.pop("is_aug")
output = model(**batch)
loss = output[0]
logits = output[1] # for TextClassification model, it's the logit. For NLL model, it's a list of two logits.
if IS_AUG_TRAINING and args.train_trick == "label_consistency":
if isinstance(model, NLLModel):
ori_logits = [model.models[i](**move_to_device(batch_ori, devices[i]))[-1] for i in range(len(model.models))] # logit of model 1 and 2
for i in range(len(logits)):
probs = [F.softmax(logits[i], dim=-1), F.softmax(ori_logits[i].to(0), dim=-1)]
mask = (batch["labels"].view(-1) != -1).to(logits[i])
cons_loss = kl_div(probs[0], probs[1]) * mask
cons_loss = cons_loss.sum() / (mask.sum() + 1e-3)
loss += args.alpha_c * cons_loss
else:
batch_ori = move_to_device(batch_ori)
ori_logit = model(**batch_ori)[-1]
probs = [F.softmax(logits, dim=-1), F.softmax(ori_logit.to(0), dim=-1)]
mask = (batch["labels"].view(-1) != -1).to(logits)
cons_loss = kl_div(probs[0], probs[1]) * mask
cons_loss = cons_loss.sum() / (mask.sum() + 1e-3)
loss += args.alpha_c * cons_loss
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(),1.0)
optimizer.step()
trained_iter += 1
if IS_AUG_TRAINING and "EMA" in args.method: # keep an exponential moving average
update_ema_variables(model, ema_model, args.ema_decay, trained_iter)
if trained_iter % args.wandb_step == 0:
wandb.log({f'loss': loss.item(), f'step_{run_id}':trained_iter})
del loss, batch
if trained_iter % args.eval_step == 0:
model.eval()
pred_y,gt_y=[],[]
for i,batch in enumerate(test_data_loader):
label = batch['labels']
del batch['labels']
batch = move_to_device(batch)
if IS_AUG_TRAINING and args.method in ["EDA_NLL_EMA", "EDA_EMA"]:
outputs = ema_model(**batch)[-1][0]
else:
outputs = model(**batch)[-1][0]
# outputs = model(**batch).logits
b,_ = outputs.size()
outputs = torch.softmax(outputs,1)
# confidence_mat = torch.ones(outputs.size())
outputs = torch.argmax(outputs,1).detach().cpu()
for j in range(b):
pred_y.append(outputs[j])
gt_y.append(label[j])
# print(outputs[j],'vs',label[j])
score = f1_score(gt_y, pred_y, average='macro')
if trained_iter % args.wandb_step == 0:
wandb.log({f'f1': score, f'step_{run_id}':trained_iter})
if score > max_f1_score and IS_AUG_TRAINING and args.method == "EDA_self_teacher_v3":
teacher_model = TextClassificationModel(args)
teacher_model.to(args.teacher_device)
copy_params(model, teacher_model)
teacher_model.eval()
if args.syn_noise:
if IS_AUG_TRAINING:
max_f1_score = max(max_f1_score,score)
else:
max_f1_score = 0
else:
max_f1_score = max(max_f1_score,score)
model.train()
# os._exit(233)
return max_f1_score
def copy_params(model, ema_model):
for ema_param, param in zip(ema_model.parameters(), model.parameters()):
ema_param.data = param.data
def compute_model(args):
f1_scores = []
train_dataset = EPDADataSet(args.train_dir,num_classes=args.num_classes)
test_dataset = EPDADataSet(args.test_dir,num_classes=args.num_classes)
try:
TOKENIZER = AutoTokenizer.from_pretrained(args.model_name_or_path,local_files_only=True)
except:
TOKENIZER = AutoTokenizer.from_pretrained(args.tokenizer_name,local_files_only=True)
collate_fn = Collect_FN(TOKENIZER, True)
# train_sampler = torch.utils.data.sampler.WeightedRandomSampler(train_dataset.weights, BATCH_SIZE)
# print(max(train_dataset.weights),min(train_dataset.weights))
train_data_loader = DataLoader(dataset=train_dataset,batch_size=args.batch_size,collate_fn=collate_fn,shuffle=True)
test_data_loader = DataLoader(dataset=test_dataset,batch_size=args.test_batch_size,shuffle=False,collate_fn=collate_fn)
# Test them for 5 times
for i in range(5):
setup_seed(i+1)
ema_model = None
if args.method in ["baseline_NLL", "EDA_NLL", "EPDA_NLL",
"EDA_NLL_NC"]:
model = NLLModel(args)
elif args.method in ["EDA_NLL_EMA"]:
model = NLLModel(args)
ema_model = NLLModel(args, ema=True)
elif args.method in ["EDA_EMA"]:
model = TextClassificationModel(args)
model.to("cuda")
ema_model = TextClassificationModel(args, ema=True)
ema_model.to("cuda")
else: # baselines, EDA, EPDA, EDA_NLL_self
if args.method in ["EDA_NLL_self", "EDA_self_BC",
"EDA_self_teacher_v1", "EDA_self_teacher_v3", "EDA_self_teacher_v4",
"EDA_self_teacher_v4_BC", "EDA_self_LS"]:
assert args.classifier_dropout is not None
model = TextClassificationModel(args)
model.to("cuda")
f1 = train(train_data_loader,test_data_loader,model,args,TOKENIZER,ema_model=ema_model,run_id=i)
f1_scores.append(f1)
print("[IMPORTANT] i=",i,"Current F1 Score",f1,"Average F1 Score: ",sum(f1_scores)/len(f1_scores), flush = True)
wandb.log({"final_f1":sum(f1_scores)/len(f1_scores)})
wandb.log({"std_f1":np.std(100*np.array(f1_scores))})
print("> Done.", flush = True)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# file path
parser.add_argument("--data_dir", default="./data", type=str)
parser.add_argument("--dataset", default="irony", type=str)
parser.add_argument("--data_split", default="10", type=str)
# data_split = '40'
# data_split = 'full'
# transformers
parser.add_argument("--model_name_or_path", default="bert-base-uncased", type=str)
parser.add_argument("--tokenizer_name", default="bert-base-uncased", type=str)
parser.add_argument("--max_seq_length", default=512, type=int)
# training
parser.add_argument("--batch_size", default=32, type=int)
parser.add_argument("--test_batch_size", default=32, type=int)
parser.add_argument("--eval_step", default=1, type=int)
parser.add_argument("--lr", default=2e-5, type=float)
parser.add_argument("--gradient_accumulation_steps", default=1, type=int)
parser.add_argument("--eps", default=1e-8, type=float)
parser.add_argument("--max_grad_norm", default=1.0, type=float)
parser.add_argument("--warmup_ratio", default=0.1, type=float)
parser.add_argument("--dropout_prob", default=0.1, type=float)
parser.add_argument("--basic_epoch", default=20, type=int)
parser.add_argument("--da_epoch", default=20, type=int)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--project_name", type=str, default="DA-NLL")
parser.add_argument("--wandb_step", type=int, default=5)
parser.add_argument("--n_model", type=int, default=2)
parser.add_argument("--alpha_t", type=float, default=50.0) # CR weight
parser.add_argument("--alpha_c", type=float, default=50.0) # training consistency
parser.add_argument("--alpha_warmup_ratio", default=0.1, type=float)
# Data Augmentaion related:
parser.add_argument("--train_trick", default="", choices=["mix_training", "label_consistency", ""],
help="mix_training: mix the original training set and the augmented set together.")
parser.add_argument("--num_aug", default=3, type=float)
parser.add_argument("--refresh_aug_epoch", default=5, type=int)
parser.add_argument('--mix_up', action='store_true', ) # default is false
parser.add_argument("--method", default="EDA_NLL",
choices=["baseline", "baseline_NLL", "EDA", "EPDA", "EDA_NLL", "EPDA_NLL", "EDA_NLL_EMA",
"EDA_NLL_self",
"EDA_NLL_NC",
"EDA_self_BC",
"EDA_self_teacher_v1", "EDA_self_teacher_v3", "EDA_self_teacher_v4",
"EDA_self_teacher_v4_BC",
"glitter",
"large_loss",
"reweight",
"EDA_self_LS",
"EDA_EMA",
],
help="EDA_NLL_NC: null class"
"EDA_self_BC: EDA + self-regularization + Background Class"
"EDA_self_teacher_v1: EDA + self-reg, and use the teacher model's logits"
"EDA_self_teacher_v3: EDA + self-reg, teacher is the best teacher"
"EDA_self_teacher_v4: EDA + self-reg, use teacher's logits for aug only"
"EDA_self_teacher_v4_BC: v4 + BC"
"glitter: glitter algorithm, filter out small loss triples"
"large_loss: filter out large loss triples"
"reweight: re-weighting mechanisms "
"EDA_self_LS: label smoothing"
"EDA_EMA: EDA + EMA",)
parser.add_argument('--syn_noise',action='store_true', help="whether to add noise to augmented data")
parser.add_argument("--syn_noise_ratio", default=0.05, type=float) # probability to flip label under EDA_noise
parser.add_argument('--org_teacher',action='store_true', help="whether to use a teacher model")
parser.add_argument('--teacher_device',type=int, default=0)
parser.add_argument("--teacher_temperature", default=1.0, type=float) # temperature for KD
parser.add_argument("--bg_class_prior", default=0.05, type=float)
parser.add_argument("--eta", default=1e-4, type=float, help="learning rate of epsilon in NC_meta")
parser.add_argument("--label_smoothing", default=0.02, type=float)
parser.add_argument("--epda_engine", default="EDA")
parser.add_argument("--alpha_da", default=0.05, type=float)
parser.add_argument("--ema_decay", default=0.999, type=float)
parser.add_argument("--classifier_dropout", default=None, type=float)
# IO options
parser.add_argument('--save_model', action='store_true', ) # whether to save the model
parser.add_argument('--save_path', default='models')
args = parser.parse_args()
args.n_gpu = torch.cuda.device_count()
os.makedirs(args.save_path, exist_ok=True)
args.train_dir = os.path.join(args.data_dir, args.dataset, 'train_'+str(args.data_split)+'.txt')
args.test_dir = os.path.join(args.data_dir, args.dataset, 'test.txt')
if 'irony' in args.train_dir:
args.num_classes = 2
elif 'agnews' in args.train_dir:
args.num_classes = 4
elif 'trec' in args.train_dir:
args.num_classes = 6
elif 'sentiment' in args.train_dir:
args.num_classes = 3
elif 'offense' in args.train_dir:
args.num_classes = 4
if args.method in ["EDA_NLL_NC", "EDA_self_BC", "EDA_self_teacher_v4_BC"]:
args.num_classes += 1
if 'hk' in os.uname()[1]: # machine node name
now = datetime.now() + timedelta(hours=-15) # from HKT to PST
else:
now = datetime.now()
if args.method == "EDA_self_BC":
method_name = "EDA_self_BC_fixed"
else:
method_name = args.method
run_name = "-".join([args.dataset, args.data_split, method_name, now.strftime("%m-%d-%H:%M")] )
wandb.init(project=args.project_name+"-"+args.dataset,
name=run_name,
config=args)
compute_model(args)