forked from luka-group/ODDA-Data-Augmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_single.py
329 lines (278 loc) · 14.2 KB
/
train_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# EPiDA Easy Plug-in Data Augumentation
import argparse
import os
import numpy as np
import re
import random
from tqdm import tqdm
from datetime import datetime, timedelta
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from transformers import BertTokenizer, BertModel, XLNetTokenizer, AutoTokenizer, AutoModel
from transformers import AdamW, BertForSequenceClassification,XLNetForSequenceClassification,AutoModelForSequenceClassification
from sklearn.utils import shuffle
from sklearn.metrics import accuracy_score,f1_score,classification_report
# from utils import SoftCrossEntropy,FocalLoss
from nlp_aug import eda_4
import nlpaug.augmenter.char as nac
import nlpaug.augmenter.word as naw
import nlpaug.augmenter.sentence as nas
from eda import eda,epda,epda_bert, eda_nll
from utils import move_to_device, setup_seed
from model_nll import *
from dataset import *
def update_ema_variables(model, ema_model, alpha, global_step):
# Use the true average until the exponential average is more correct
# alpha = min(1 - 1 / (global_step + 1), alpha)
for ema_param, param in zip(ema_model.parameters(), model.parameters()):
ema_param.data.mul_(alpha).add_(param.data, alpha=1 - alpha)
device = torch.device('cuda')
def do_aug(inputs,labels,aug_method,get_embed_fn,model=None,num_aug=1,epda_engine="EDA"):
if aug_method == 'EDA':
aug_fn = eda_4
elif aug_method == 'EEDA':
aug_fn = eda
elif aug_method == 'EPDA':
aug_fn = epda_bert
# print(len(inputs),'vs',len(labels))
Xs,Ys= [],[]
for i in range(len(inputs)):
if aug_method == 'EPDA':
translator = None
if epda_engine == 'CWE':
nlp_auger = naw.ContextualWordEmbsAug(action='insert',device='cuda')
elif epda_engine == 'BT':
nlp_auger = naw.BackTranslationAug(device='cuda')
else:
nlp_auger = None
# if labels[i]==0 or labels[i]==2:
# # print("Dont aug")
# augedtxts = [inputs[i]]
# else:
MIX_UP = False # TQ: TODO!
augedtxts,_ = aug_fn(txt=inputs[i],label=labels[i],num_aug=num_aug,model=model,translator=translator,
engine=epda_engine,alpha=args.alpha_da,mix_up=MIX_UP,get_embed_fn=get_embed_fn,loss_fn=nn.CrossEntropyLoss(),nlp_auger = nlp_auger)
Xs+=augedtxts
# append with the same labels
for j in range(len(augedtxts)):
Ys.append(labels[i])
else:
txts = aug_fn(inputs[i],num_aug=num_aug)
for txt in txts:
embed = get_embed_fn(txt)
# print("Size",embed.size())
Xs.append(embed)
label_tensor = torch.zeros(1)
label_tensor[0] = labels[i]
label_tensor = label_tensor.long()
Ys.append(label_tensor)
return Xs,Ys
def train(train_data_loader,test_data_loader,model,args,TOKENIZER,ema_model=None):
EPOCHES = args.basic_epoch
EPOCHES += args.da_epoch
if args.method == "baseline" and args.da_epoch > 0:
print("warning, da_epoch should be 0 for baseline models.")
print("Update EPOCHES to",EPOCHES)
input_dir = train_data_loader.dataset.dir
devices = [i % args.n_gpu for i in range(args.n_model)]
max_f1_score = 0.0
trained_iter = 0
# UPDATED = False
optimizer = AdamW(model.parameters(), lr=args.lr, eps=1e-8, weight_decay=1e-3)
# optimizer = Adam(model.parameters(), lr=LR, eps=1e-8, weight_decay=1e-3)
# reset the dataset.
train_data_loader.dataset.reset()
IS_AUG_TRAINING = False
for epoch in tqdm(range(EPOCHES)):
model.train()
if args.method not in ["baseline", "baseline_NLL"] and epoch % 5==0 and epoch>=args.basic_epoch:
# need augmentation
print(f"Do data augmentation at epoch {epoch}")
lines = open(input_dir,'r').readlines()
Xs,Ys=[],[]
count = [0]*args.num_classes
for line in lines:
y,x = line.split('\t')
y = int(y)
# if count[y] >= int(434*int(data_split)*2):
# continue
count[y] += 1
x = x[:-1]
x = get_only_chars(x)
Xs.append(x)
Ys.append(y)
if args.method in ["EDA_NLL", "EDA", "EDA_EMA", "EDA_NLL_EMA"]:
inputs, labels = eda_nll(Xs, Ys, args)
elif "EPDA" in args.method: # EPDA, EPDA_NLL, EPDA_EMA
inputs,labels = do_aug(Xs,Ys,"EPDA",get_embed_fn=TOKENIZER,model=model,num_aug=args.num_aug)
print('Before',len(train_data_loader))
if args.train_trick == "mix_training":
train_data_loader.dataset.reset()
train_data_loader.dataset.update(Xs + inputs,train_data_loader.dataset.O_Ys + labels)
elif args.train_trick == "label_consistency":
aug_dataset = ConsDataset(Xs, inputs, labels, args.num_aug)
train_data_loader = DataLoader(dataset=aug_dataset,batch_size=args.batch_size,collate_fn=Collect_FN_cons(TOKENIZER),shuffle=True)
else:
train_data_loader.dataset.update(inputs,labels)
print("< Update Done.")
print('After',len(train_data_loader))
# UPDATED = True
# finish training on augmented data
# optimizer = AdamW(model.parameters(), lr=LR, eps=1e-8, weight_decay=1e-3)
IS_AUG_TRAINING = True
if ema_model is not None:
copy_params(model, ema_model, devices)
for i,batch in enumerate(train_data_loader):
if IS_AUG_TRAINING and args.train_trick == "label_consistency":
batch_ori, batch = (batch[0], batch[1]) # train with augmented data. The original data is batch_ori
batch = move_to_device(batch)
optimizer.zero_grad()
if args.method in ["EDA_NLL", "EPDA_NLL", "EDA_NLL_EMA"]: # NLL model
output = model(no_nll=not IS_AUG_TRAINING, **batch)
elif args.method in ["baseline_NLL"] and epoch >= args.basic_epoch: # baseline + NLL
output = model(no_nll=False, **batch)
else:
output = model(**batch)
loss = output[0]
logits = output[1] # for TextClassification model, it's the logit. For NLL model, it's a list of two logits.
if IS_AUG_TRAINING and args.train_trick == "label_consistency":
if isinstance(model, NLLModel):
ori_logits = [model.models[i](**move_to_device(batch_ori, devices[i]))[-1] for i in range(len(model.models))] # logit of model 1 and 2
for i in range(len(logits)):
probs = [F.softmax(logits[i], dim=-1), F.softmax(ori_logits[i].to(0), dim=-1)]
mask = (batch["labels"].view(-1) != -1).to(logits[i])
cons_loss = kl_div(probs[0], probs[1]) * mask
cons_loss = cons_loss.sum() / (mask.sum() + 1e-3)
loss += args.alpha_c * cons_loss
else:
batch_ori = move_to_device(batch_ori)
ori_logit = model(**batch_ori)[-1]
probs = [F.softmax(logits, dim=-1), F.softmax(ori_logit.to(0), dim=-1)]
mask = (batch["labels"].view(-1) != -1).to(logits)
cons_loss = kl_div(probs[0], probs[1]) * mask
cons_loss = cons_loss.sum() / (mask.sum() + 1e-3)
loss += args.alpha_c * cons_loss
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(),1.0)
optimizer.step()
trained_iter += 1
if IS_AUG_TRAINING and "EMA" in args.method: # keep an exponential moving average
update_ema_variables(model, ema_model, args.ema_decay, trained_iter)
del loss, batch
if trained_iter % args.eval_step == 0:
model.eval()
pred_y,gt_y=[],[]
for i,batch in enumerate(test_data_loader):
label = batch['labels']
del batch['labels']
batch = move_to_device(batch)
if IS_AUG_TRAINING and args.method in ["EDA_NLL_EMA"]:
outputs = ema_model(**batch)[-1][0]
else:
outputs = model(**batch)[-1][0]
# outputs = model(**batch).logits
b,_ = outputs.size()
outputs = torch.softmax(outputs,1)
# confidence_mat = torch.ones(outputs.size())
outputs = torch.argmax(outputs,1).detach().cpu()
for j in range(b):
pred_y.append(outputs[j])
gt_y.append(label[j])
# print(outputs[j],'vs',label[j])
score = f1_score(gt_y, pred_y, average='macro')
if score > max_f1_score:
save_dir = os.path.join(args.save_path, args.dataset + args.data_split, args.method + args.save_special_name + ".pt")
os.makedirs(os.path.dirname(save_dir), exist_ok=True)
torch.save(model, save_dir)
max_f1_score = max(max_f1_score,score)
# os._exit(233)
return max_f1_score
def copy_params(model, ema_model, devices):
for ema_param, param in zip(ema_model.parameters(), model.parameters()):
ema_param.data = param.data
def compute_single_model(args):
f1_scores = []
train_dataset = EPDADataSet(args.train_dir,num_classes=args.num_classes)
test_dataset = EPDADataSet(args.test_dir,num_classes=args.num_classes)
try:
TOKENIZER = AutoTokenizer.from_pretrained(args.model_name_or_path,local_files_only=True)
except:
TOKENIZER = AutoTokenizer.from_pretrained(args.tokenizer_name,local_files_only=True)
collate_fn = Collect_FN(TOKENIZER, True)
# train_sampler = torch.utils.data.sampler.WeightedRandomSampler(train_dataset.weights, BATCH_SIZE)
# print(max(train_dataset.weights),min(train_dataset.weights))
train_data_loader = DataLoader(dataset=train_dataset,batch_size=args.batch_size,collate_fn=collate_fn,shuffle=True)
test_data_loader = DataLoader(dataset=test_dataset,batch_size=args.test_batch_size,shuffle=False,collate_fn=collate_fn)
# Test them for 5 times
setup_seed(0)
ema_model = None
if args.method in ["baseline_NLL", "EDA_NLL", "EPDA_NLL"]:
model = NLLModel(args)
elif args.method in ["EDA_NLL_EMA"]:
model = NLLModel(args)
ema_model = NLLModel(args, ema=True)
else: # baselines, EDA, EPDA
model = TextClassificationModel(args)
model.to("cuda")
f1 = train(train_data_loader,test_data_loader,model,args,TOKENIZER,ema_model=ema_model)
f1_scores.append(f1)
print("Current F1 Score",f1,"Average F1 Score: ",sum(f1_scores)/len(f1_scores), flush = True)
print("> Done.", flush = True)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# file path
parser.add_argument("--data_dir", default="./data", type=str)
parser.add_argument("--dataset", default="irony", type=str)
parser.add_argument("--data_split", default="10", type=str)
# data_split = '40'
# data_split = 'full'
# transformers
parser.add_argument("--model_name_or_path", default="bert-base-uncased", type=str)
parser.add_argument("--tokenizer_name", default="bert-base-uncased", type=str)
parser.add_argument("--max_seq_length", default=512, type=int)
# training
parser.add_argument("--batch_size", default=32, type=int)
parser.add_argument("--test_batch_size", default=32, type=int)
parser.add_argument("--eval_step", default=1, type=int)
parser.add_argument("--lr", default=2e-5, type=float)
parser.add_argument("--gradient_accumulation_steps", default=1, type=int)
parser.add_argument("--eps", default=1e-8, type=float)
parser.add_argument("--max_grad_norm", default=1.0, type=float)
parser.add_argument("--warmup_ratio", default=0.1, type=float)
parser.add_argument("--dropout_prob", default=0.1, type=float)
parser.add_argument("--basic_epoch", default=20, type=int)
parser.add_argument("--da_epoch", default=20, type=int)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--n_model", type=int, default=2)
parser.add_argument("--alpha_t", type=float, default=50.0) # CR weight
parser.add_argument("--alpha_c", type=float, default=50.0) # training consistency
parser.add_argument("--alpha_warmup_ratio", default=0.1, type=float)
# Data Augmentaion related:
parser.add_argument("--train_trick", default="", choices=["mix_training", "label_consistency", ""],
help="mix_training: mix the original training set and the augmented set together.")
parser.add_argument("--num_aug", default=3, type=float)
parser.add_argument('--mix_up', action='store_true', ) # default is false
parser.add_argument("--method", default="EDA_NLL",
choices=["baseline", "baseline_NLL", "EDA", "EPDA", "EDA_NLL", "EPDA_NLL", "EDA_NLL_EMA"])
parser.add_argument("--epda_engine", default="EDA")
parser.add_argument("--alpha_da", default=0.05, type=float)
parser.add_argument("--ema_decay", default=0.999, type=float)
# IO options
parser.add_argument('--save_model', action='store_true', ) # whether to save the model
parser.add_argument('--save_path', default='models')
parser.add_argument('--save_special_name', default="")
args = parser.parse_args()
args.n_gpu = torch.cuda.device_count()
os.makedirs(args.save_path, exist_ok=True)
args.train_dir = os.path.join(args.data_dir, args.dataset, 'train_'+str(args.data_split)+'.txt')
args.test_dir = os.path.join(args.data_dir, args.dataset, 'test.txt')
if 'irony' in args.train_dir:
args.num_classes = 2
elif 'agnews' in args.train_dir:
args.num_classes = 4
elif 'trec' in args.train_dir:
args.num_classes = 6
elif 'sentiment' in args.train_dir:
args.num_classes = 3
compute_single_model(args)