forked from CyberAgentAILab/cmaes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualizer.py
184 lines (144 loc) · 4.71 KB
/
visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
"""
Usage:
python3 visualizer/visualizer.py --function six-hump-camel
"""
import argparse
import numpy as np
from scipy import stats
from matplotlib.colors import LinearSegmentedColormap
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from pylab import rcParams
from cmaes.cma import CMA
parser = argparse.ArgumentParser()
parser.add_argument(
"--function",
choices=["quadratic", "himmelblau", "rosenbrock", "six-hump-camel"],
default="rosenbrock",
)
args = parser.parse_args()
optimizer = CMA(
mean=np.zeros(2), sigma=8 / 6, bounds=np.array([[-4, 4], [-4, 4]]), seed=1,
)
solutions = []
rcParams["figure.figsize"] = 10, 5
fig, (ax1, ax2) = plt.subplots(1, 2)
color_dict = {
"red": ((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)),
"green": ((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)),
"blue": ((0.0, 1.0, 1.0), (1.0, 1.0, 1.0)),
"yellow": ((1.0, 1.0, 1.0), (1.0, 1.0, 1.0)),
}
bw = LinearSegmentedColormap("BlueWhile", color_dict)
def himmelbleu(x1, x2):
return (x1 ** 2 + x2 - 11.0) ** 2 + (x1 + x2 ** 2 - 7.0) ** 2
def himmelbleu_contour(x1, x2):
return np.log(himmelbleu(x1, x2) + 1)
def quadratic(x1, x2):
return (x1 - 3) ** 2 + (10 * (x2 + 2)) ** 2
def quadratic_contour(x1, x2):
return np.log(quadratic(x1, x2) + 1)
def rosenbrock(x1, x2):
return 100 * (x2 - x1 ** 2) ** 2 + (x1 - 1) ** 2
def rosenbrock_contour(x1, x2):
return np.log(rosenbrock(x1, x2) + 1)
def six_hump_camel(x1, x2):
return (
(4 - 2.1 * (x1 ** 2) + (x1 ** 4) / 3) * (x1 ** 2)
+ x1 * x2
+ (-4 + 4 * x2 ** 2) * (x2 ** 2)
)
def six_hump_camel_contour(x1, x2):
return np.log(six_hump_camel(x1, x2) + 1.0316)
if args.function == "quadratic":
fig.suptitle("CMA Evolution Strategy for quadratic function")
objective = quadratic
contour_function = quadratic_contour
global_minimums = [
(3.0, -2.0),
]
# input domain
x1_lower_bound, x1_upper_bound = -4, 4
x2_lower_bound, x2_upper_bound = -4, 4
elif args.function == "himmelblau":
fig.suptitle("CMA Evolution Strategy for Himmelblau function")
objective = himmelbleu
contour_function = himmelbleu_contour
global_minimums = [
(3.0, 2.0),
(-2.805118, 3.131312),
(-3.779310, -3.283186),
(3.584428, -1.848126),
]
# input domain
x1_lower_bound, x1_upper_bound = -4, 4
x2_lower_bound, x2_upper_bound = -4, 4
elif args.function == "rosenbrock":
# https://www.sfu.ca/~ssurjano/rosen.html
fig.suptitle("CMA Evolution Strategy for Rosenbrock function")
objective = rosenbrock
contour_function = rosenbrock_contour
global_minimums = [
(1, 1),
]
# input domain
x1_lower_bound, x1_upper_bound = -5, 10
x2_lower_bound, x2_upper_bound = -5, 10
elif args.function == "six-hump-camel":
# https://www.sfu.ca/~ssurjano/camel6.html
fig.suptitle("CMA Evolution Strategy for Six-hump camel function")
objective = six_hump_camel
contour_function = six_hump_camel_contour
global_minimums = [
(0.0898, -0.7126),
(-0.0898, 0.7126),
]
# input domain
x1_lower_bound, x1_upper_bound = -3, 3
x2_lower_bound, x2_upper_bound = -2, 2
else:
raise ValueError("invalid function type")
def init():
ax1.set_xlim(x1_lower_bound, x1_upper_bound)
ax1.set_ylim(x2_lower_bound, x2_upper_bound)
ax2.set_xlim(x1_lower_bound, x1_upper_bound)
ax2.set_ylim(x2_lower_bound, x2_upper_bound)
# Plot 4 local minimum value
for m in global_minimums:
ax1.plot(m[0], m[1], "y*", ms=10)
ax2.plot(m[0], m[1], "y*", ms=10)
# Plot contour of himmelbleu function
x1 = np.arange(x1_lower_bound, x1_upper_bound, 0.01)
x2 = np.arange(x2_lower_bound, x2_upper_bound, 0.01)
x1, x2 = np.meshgrid(x1, x2)
ax1.contour(x1, x2, contour_function(x1, x2), 30, cmap=bw)
def update(frame):
global solutions
if len(solutions) == optimizer.population_size:
optimizer.tell(solutions)
solutions = []
x = optimizer.ask()
evaluation = objective(x[0], x[1])
solution = (
x,
evaluation,
)
solutions.append(solution)
# Plot sample points
ax1.plot(x[0], x[1], "o", c="r", label="2d", alpha=0.5)
# Plot multivariate gaussian distribution of CMA-ES
mu = optimizer._mean
sigma = optimizer._C
x, y = np.mgrid[
x1_lower_bound:x1_upper_bound:0.01, x2_lower_bound:x2_upper_bound:0.01
]
rv = stats.multivariate_normal(mu, sigma)
pos = np.dstack((x, y))
ax2.contourf(x, y, rv.pdf(pos))
def main():
ani = animation.FuncAnimation(
fig, update, frames=150, init_func=init, blit=False, interval=50
)
ani.save(f"./tmp/{args.function}.mp4")
if __name__ == "__main__":
main()