Skip to content

Commit dfa5712

Browse files
caitlinwheelesscaitlinwheeless
and
caitlinwheeless
authored
docs: Add links to ml-backend directory (#625)
Co-authored-by: caitlinwheeless <[email protected]>
1 parent 1faa0be commit dfa5712

File tree

21 files changed

+120
-3
lines changed

21 files changed

+120
-3
lines changed

label_studio_ml/examples/bert_classifier/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -27,6 +27,12 @@ The NewModel is a BERT-based text classification model that is designed to work
2727
- Automatically download the labeled tasks from Label Studio and prepare the data for training.
2828
- Customize the training parameters such as learning rate, number of epochs, and weight decay.
2929

30+
## Before you begin
31+
32+
Before you begin, you must install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
33+
34+
This tutorial uses the [`bert_classifier` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/bert_classifier).
35+
3036

3137
## Running with Docker (recommended)
3238

label_studio_ml/examples/easyocr/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -24,6 +24,12 @@ The primary function of this connection is to recognize and extract text from im
2424

2525
In the context of Label Studio, this connection enhances the platform's labeling capabilities, allowing users to automatically generate labels for text in images. This can be particularly useful in tasks such as data annotation, document digitization, and more.
2626

27+
## Before you begin
28+
29+
Before you begin, you must install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
30+
31+
This tutorial uses the [`easyocr` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/easyocr).
32+
2733
## Labeling configuration
2834

2935
The EasyOCR model connection can be used with the default labeling configuration for OCR in Label Studio. This configuration typically involves defining the types of labels to be used (e.g., text, handwriting, etc.) and the regions of the image where these labels should be applied.

label_studio_ml/examples/flair/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -20,6 +20,12 @@ image: "/tutorials/flair.png"
2020

2121
This example demonstrates how to use Flair NER model with Label Studio.
2222

23+
## Before you begin
24+
25+
Before you begin, you must install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
26+
27+
This tutorial uses the [`flair` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/flair).
28+
2329
## Quickstart
2430

2531
1. Build and start the Machine Learning backend on `http://localhost:9090`

label_studio_ml/examples/gliner/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -24,6 +24,12 @@ The GLiNER model is a BERT family model for generalist NER. We download the mode
2424
model is
2525
available on [GitHub](https://github.com/urchade/GLiNER).
2626

27+
## Before you begin
28+
29+
Before you begin, you must install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
30+
31+
This tutorial uses the [`gliner` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/gliner).
32+
2733

2834
## Running with Docker (recommended)
2935

label_studio_ml/examples/grounding_dino/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -29,6 +29,12 @@ This integration will allow you to:
2929

3030
See [here](https://github.com/IDEA-Research/GroundingDINO) for more details about the pre-trained Grounding DINO model.
3131

32+
## Before you begin
33+
34+
Before you begin, you must install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
35+
36+
This tutorial uses the [`grounding_dino` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/grounding_dino).
37+
3238

3339
## Quickstart
3440

label_studio_ml/examples/grounding_sam/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -32,6 +32,12 @@ This integration will allow you to:
3232

3333
See [here](https://github.com/IDEA-Research/GroundingDINO) for more details about the pre-trained Grounding DINO model.
3434

35+
## Before you begin
36+
37+
Before you begin, you must install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
38+
39+
This tutorial uses the [`grounding_sam` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/grounding_sam).
40+
3541

3642
## Quickstart
3743

label_studio_ml/examples/huggingface_llm/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -23,6 +23,12 @@ This machine learning backend is designed to work with Label Studio, providing a
2323

2424
Check [text generation pipelines on Hugging Face](https://huggingface.co/tasks/text-generation) for more details.
2525

26+
## Before you begin
27+
28+
Before you begin, you must install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
29+
30+
This tutorial uses the [`huggingface_llm` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/huggingface_llm).
31+
2632
## Label Studio XML labeling config
2733

2834
This ML backend is compatible with a Label Studio labeling configuration that uses a `<TextArea>` tag. Here is an example of a compatible labeling configuration:

label_studio_ml/examples/huggingface_ner/README.md

+7-1
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,13 @@ The model instantiates `AutoModelForTokenClassification` from Hugging Face's tra
2525
- If you want to use this model only in inference mode, it serves predictions from the pre-trained model.
2626
- If you want to fine-tune the model, you can use the Label Studio interface to provide training data and train the model.
2727

28-
Read more about the compatible models from [Hugging Face's official documentation](https://huggingface.co/docs/transformers/en/tasks/token_classification)
28+
Read more about the compatible models from [Hugging Face's official documentation](https://huggingface.co/docs/transformers/en/tasks/token_classification).
29+
30+
## Before you begin
31+
32+
Before you begin, you must install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
33+
34+
This tutorial uses the [`huggingface_ner` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/huggingface_ner).
2935

3036

3137
## Labeling configuration

label_studio_ml/examples/interactive_substring_matching/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -20,6 +20,12 @@ image: "/tutorials/interactive-substring-matching.png"
2020

2121
The Machine Learning (ML) backend is designed to enhance the efficiency of auto-labeling in Named Entity Recognition (NER) tasks. It achieves this by selecting a keyword and automatically matching the same keyword in the provided text.
2222

23+
## Before you begin
24+
25+
Before you begin, you must install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
26+
27+
This tutorial uses the [`interactive_substring_matching` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/interactive_substring_matching).
28+
2329
## Recommended labeling config
2430

2531
This ML backend works with the default NER template from Label Studio. You can find this by selecting Label Studio's pre-built NER template when configuring the labeling interface. It is available under **Natural Language Processing > Named Entity Recognition**.

label_studio_ml/examples/langchain_search_agent/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -27,6 +27,12 @@ This example demonstrates how to use Label Studio with a custom Machine Learning
2727
It uses a [Langchain](https://www.langchain.com/)-based agent that accepts a text input, searches for Google,
2828
and returns the answer based on the search results (a.k.a Retrieval Augmented Generation).
2929

30+
## Before you begin
31+
32+
Before you begin, you must install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
33+
34+
This tutorial uses the [`langchain_search_agent` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/langchain_search_agent).
35+
3036
## Prerequisites
3137

3238
### Use Google Search

label_studio_ml/examples/llm_interactive/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -35,6 +35,12 @@ The interactive flow allows you to perform the following scenarios:
3535

3636
Check the [Generative AI templates](https://labelstud.io/templates/gallery_generative_ai) section for more examples.
3737

38+
## Before you begin
39+
40+
Before you begin, you must install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
41+
42+
This tutorial uses the [`llm_interactive` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/llm_interactive).
43+
3844
## Quickstart
3945

4046
1. Build and start the Machine Learning backend on `http://localhost:9090` <br /><br />

label_studio_ml/examples/mmdetection-3/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -27,6 +27,12 @@ The model is based on the YOLOv3 architecture with a MobileNetV2 backbone and tr
2727

2828
![screenshot.png](screenshot.png)
2929

30+
## Before you begin
31+
32+
Before you begin, you must install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
33+
34+
This tutorial uses the [`mmdetection-3` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/mmdetection-3).
35+
3036
## Quick usage
3137

3238
For quick usage run `docker-compose` in your working directory:

label_studio_ml/examples/nemo_asr/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -23,6 +23,12 @@ This example demonstrates how to use the [NeMo](https://github.com/NVIDIA/NeMo/b
2323

2424
Use this model if you want to transcribe and fix your audio data.
2525

26+
## Before you begin
27+
28+
Before you begin, you must install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
29+
30+
This tutorial uses the [`nemo_asr` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/nemo_asr).
31+
2632
## Labeling interface
2733

2834
This example works with the Label Studio's pre-built **Audio Transcription** template (available under **Audio Processing > Audio Transcription**).

label_studio_ml/examples/segment_anything_2_image/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -27,6 +27,12 @@ You'll need to follow the instructions below to stand up an instance of SAM2 bef
2727

2828
[![Connecting SAM2 Model to Label Studio for Image Annotation ](https://img.youtube.com/vi/FTg8P8z4RgY/0.jpg)](https://www.youtube.com/watch?v=FTg8P8z4RgY)
2929

30+
## Before you begin
31+
32+
Before you begin, you must install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
33+
34+
This tutorial uses the [`segment_anything_2_image` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/segment_anything_2_image).
35+
3036
Note that as of 8/1/2024, SAM2 only runs on GPU.
3137

3238
## Labeling configuration

label_studio_ml/examples/segment_anything_2_video/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -25,6 +25,12 @@ see the [segment_anything_2_image repository](https://github.com/HumanSignal/lab
2525

2626
![sam2](./Sam2Video.gif)
2727

28+
## Before you begin
29+
30+
Before you begin, you must install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
31+
32+
This tutorial uses the [`segment_anything_2_video` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/segment_anything_2_video).
33+
2834
## Running from source
2935

3036
1. To run the ML backend without Docker, you have to clone the repository and install all dependencies using pip:

label_studio_ml/examples/segment_anything_model/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -27,6 +27,12 @@ Use Facebook's Segment Anything Model with Label Studio!
2727
In July 2024, Facebook released an update to the Segement Anything model, called SAM 2. To use this newer model for
2828
labeling, see [the segment_anything_2_image repo](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/segment_anything_2_image)
2929

30+
## Before you begin
31+
32+
Before you begin, you must install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
33+
34+
This tutorial uses the [`segment_anything_model` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/segment_anything_model).
35+
3036
## Quickstart
3137

3238
### Using Docker Compose (recommended)

label_studio_ml/examples/sklearn_text_classifier/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -22,6 +22,12 @@ The Sklearn Text Classifier model is a custom machine learning backend for Label
2222

2323
The model is trained on the labeled texts collected from Label Studio, and it uses the Label Studio API to fetch the labeled tasks for training. This integration with Label Studio allows for a seamless and efficient labeling workflow, as the model can be retrained and updated as new labeled data becomes available.
2424

25+
## Before you begin
26+
27+
Before you begin, you must install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
28+
29+
This tutorial uses the [`sklearn_text_classifier` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/sklearn_text_classifier).
30+
2531
## Labeling configuration
2632

2733
The Sklearn Text Classifier model is designed to work with the default labeling configuration for text classification in Label Studio. This configuration includes a single `<Choices>` output and a single `<Text>` input. The model retrieves the first occurrence of these tags from the labeling configuration and uses them for its prediction:

label_studio_ml/examples/spacy/README.md

+5
Original file line numberDiff line numberDiff line change
@@ -22,6 +22,11 @@ Current implementation includes the following models:
2222
- Named Entity Recognition (NER)
2323
- [coming soon...] Part-of-Speech (POS) tagging
2424

25+
## Before you begin
26+
27+
Before you begin, you must install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
28+
29+
This tutorial uses the [`spacy` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/spacy).
2530

2631
## Quickstart
2732

label_studio_ml/examples/tesseract/README.md

+4-1
Original file line numberDiff line numberDiff line change
@@ -29,13 +29,16 @@ Tested against Label Studio 1.10.1, with basic support for both Label Studio
2929
Local File Storage and S3-compatible storage, with a example data storage with
3030
MinIO.
3131

32-
## Setup process
32+
## Before you begin
3333

3434
Before you begin:
3535
* Ensure git is installed
3636
* Ensure Docker Compose is installed. For MacOS and Windows users,
3737
we suggest using Docker Desktop.
3838

39+
You must also install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
40+
41+
This tutorial uses the [`tesseract` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/tesseract).
3942

4043
### 1. Install Label Studio
4144

label_studio_ml/examples/watsonx_llm/README.md

+6
Original file line numberDiff line numberDiff line change
@@ -31,6 +31,12 @@ See the configuration notes at the bottom for details on how to set up your envi
3131

3232
For a video demonstration, see [Integrating Label Studio with IBM WatsonX](https://www.youtube.com/watch?v=9iP2yO4Geqc).
3333

34+
## Before you begin
35+
36+
Before you begin, you must install the [Label Studio ML backend](https://github.com/HumanSignal/label-studio-ml-backend?tab=readme-ov-file#quickstart).
37+
38+
This tutorial uses the [`watsonx_llm` example](https://github.com/HumanSignal/label-studio-ml-backend/tree/master/label_studio_ml/examples/watsonx_llm).
39+
3440
## Setting up your label_config
3541
For this project, we recommend you start with the labeling config as defined below, but you can always edit it or expand it to
3642
meet your needs! Crucially, there must be a `<TextArea>` tag for the model to insert its response into.

label_studio_ml/examples/yolo/README.md

+2-1
Original file line numberDiff line numberDiff line change
@@ -99,7 +99,8 @@ This tutorial uses the [YOLO example](https://github.com/HumanSignal/label-studi
9999

100100
- `<RectangleLabels>` - [Bounding boxes](https://labelstud.io/tags/rectanglelabels); object detection task
101101
- `<PolygonLabels>` - [Polygons](https://labelstud.io/tags/polygonlables); segmentation task
102-
- `<VideoRectangle>` - [Video bounding boxes](https://labelstud.io/tags/videorectangle); object tracking task
102+
- `<VideoRectangle>` - [Video bounding boxes](https://labelstud.io/tags/videorectangle); video object tracking task
103+
- `<KeyPointLabels>` - [Key points](https://labelstud.io/tags/keypointlabels); pose detection task
103104
- `<Choices>` - [Classification](https://labelstud.io/tags/choices)
104105

105106
**How to skip the control tag?**

0 commit comments

Comments
 (0)