This repository was archived by the owner on Mar 5, 2021. It is now read-only.
forked from tudo-astroparticlephysics/PROPOSAL
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_tau_decay_hadrons.py
221 lines (161 loc) · 5.37 KB
/
plot_tau_decay_hadrons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import pyPROPOSAL as pp
import time
try:
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib import colors
except ImportError:
raise ImportError("Matplotlib not installed!")
import numpy as np
data_formfactor = np.array([
[0.6, 0.7, 0.75, 1.0, 1.6, 2.45],
[0.493, 0.471, 0.407, 0.351, 0.243, 0.167]
])
form_factor = np.poly1d(np.polyfit(1e6 * data_formfactor[0], data_formfactor[1], 3))
# def form_factor(x):
# term = 1. + 0.0306 * x + (0.0194 * x**3) / (1. + x)
# return np.exp(-1.171 * x**(0.536)) * term
leptons = [
pp.particle.NuTauDef.get(),
pp.particle.NuTauBarDef.get(),
pp.particle.NuMuDef.get(),
pp.particle.NuMuBarDef.get(),
pp.particle.NuEDef.get(),
pp.particle.NuEBarDef.get(),
pp.particle.TauMinusDef.get(),
pp.particle.TauPlusDef.get(),
pp.particle.MuMinusDef.get(),
pp.particle.MuPlusDef.get(),
pp.particle.EMinusDef.get(),
pp.particle.EPlusDef.get(),
]
def filter_hadr(secondarys):
prods = [p for p in secondarys if p.id == pp.particle.Data.Particle]
E = [p.energy for p in prods if p.particle_def not in leptons]
return sum(E)
def filter_particle(secondarys, particle):
prods = [p for p in secondarys if p.id == pp.particle.Data.Particle]
E = [p.energy for p in prods if p.particle_def == particle]
return sum(E)
def filter_lep(secondarys):
prods = [p for p in secondarys if p.id == pp.particle.Data.Particle]
E = [p.energy for p in prods if p.particle_def in leptons]
return sum(E)
def scalar_product(a, b):
return a[0] * b[0] - a[1] * b[1]
def add(a, b):
return (a[0] + b[0], a[1] + b[1])
def evaluate(particle, products):
G_F = 1.1663787*1e-2 # MeV
V_ud = 0.97427
tau = particle
pi1 = products[0]
pi2 = products[1]
nu = products[2]
P = (tau.energy, tau.momentum * tau.direction)
p1 = (pi1.energy, pi1.momentum * pi1.direction)
p2 = (pi2.energy, pi2.momentum * pi2.direction)
k = (nu.energy, nu.momentum * nu.direction)
p12 = add(p1, (-1.0 * p2[0], -1.0 * p2[1]))
q = add(p1, p2)
q2 = scalar_product(q, q)
term1 = scalar_product(k, p12)
term2 = scalar_product(P, p12)
term3 = scalar_product(P, k) * scalar_product(p12, p12)
Y = 2. * term1 * term2 - term3
return 4. * (G_F * V_ud * form_factor(q2))**2 * Y
if __name__ == "__main__":
# =========================================================
# Save energies
# =========================================================
statistics = int(1e5)
binning = 50
tau = pp.particle.Particle(pp.particle.TauMinusDef.get())
tau.direction = pp.Vector3D(0, 0, -1)
products = [
pp.particle.Pi0Def.get(),
pp.particle.PiMinusDef.get(),
pp.particle.NuTauDef.get()
]
products_particles = [pp.particle.Particle(p) for p in products]
for p in products_particles:
p.direction = pp.Vector3D(0, 0, -1)
p.energy = 1e2
print(evaluate(tau, products_particles))
ME = pp.decay.ManyBodyPhaseSpace(products, evaluate)
E_lep_pi0 = []
E_lep_pim = []
E_lep_nu = []
s1 = []
s2 = []
passed_time = 0.0
for i in range(statistics):
tau.position = pp.Vector3D(0, 0, 0)
tau.direction = pp.Vector3D(0, 0, -1)
tau.energy = tau.particle_def.mass
tau.propagated_distance = 0
t = time.time()
d = ME.decay(tau)
E_lep_pi0.append(filter_particle(d, pp.particle.Pi0Def.get()))
E_lep_pim.append(filter_particle(d, pp.particle.PiMinusDef.get()))
E_lep_nu.append(filter_particle(d, pp.particle.NuTauDef.get()))
p1 = add((d[0].energy, d[0].momentum * d[0].direction), (d[1].energy, d[1].momentum * d[1].direction))
p2 = add((d[1].energy, d[1].momentum * d[1].direction), (d[2].energy, d[2].momentum * d[2].direction))
s1.append(
scalar_product(p1, p1)
)
s2.append(
scalar_product(p2, p2)
)
passed_time += time.time() - t
print("needed time = {}s".format(passed_time))
# =========================================================
# Plot
# =========================================================
fig = plt.figure()
ax = fig.add_subplot(111)
hist = ax.hist(
np.array(E_lep_pi0) / tau.energy,
histtype="step",
bins=binning,
color='k',
ls='-',
label=r"$\pi^0$"
)
hist = ax.hist(
np.array(E_lep_pim) / tau.energy,
histtype="step",
bins=binning,
color='k',
ls='-.',
label=r"$\pi^-$"
)
hist = ax.hist(
np.array(E_lep_nu) / tau.energy,
histtype="step",
bins=binning,
color='k',
ls=':',
label=r"$\nu$"
)
ax.set_ylabel(r'count')
ax.legend(loc='upper left')
fig.tight_layout()
fig.savefig("hadronic.pdf")
# =========================================================
# Dalitz Plot
# =========================================================
fig = plt.figure()
ax = fig.add_subplot(111)
hist = ax.hist2d(
s1,
s2,
bins=500,
norm=colors.LogNorm()
)
plt.colorbar(hist[3], ax=ax, pad=0.01)
ax.set_xlabel(r'$s_1 = (p_1 + p_2)^2$ / $\rm{GeV}^2$')
ax.set_ylabel(r'$s_2 = (p_2 + p_3)^2$ / $\rm{GeV}^2$')
fig.tight_layout()
fig.savefig("dalitz.pdf")
plt.show()