You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
1. I have searched related issues but cannot get the expected help.
2. The bug has not been fixed in the latest version.
3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.
Describe the bug
I'm attempting to quantize the DeepSeek-R1-Distill-Qwen-32B model on my server equipped with 4x V100 GPUs using the following command:
CUDA_VISIBLE_DEVICES=0,1,2,3 lmdeploy lite smooth_quant ./DeepSeek-R1-Distill-Qwen-32B --work-dir ./DeepSeek-R1-Distill-Qwen-32B-int8 --quant-dtype int8
However, I keep encountering a torch.OutOfMemoryError even though CUDA_VISIBLE_DEVICES is properly set. Could you please advise on how to successfully complete the quantization process?
Reproduction
CUDA_VISIBLE_DEVICES=0,1,2,3 lmdeploy lite smooth_quant ./DeepSeek-R1-Distill-Qwen-32B --work-dir ./DeepSeek-R1-Distill-Qwen-32B-int8 --quant-dtype int8
Environment
sys.platform: linux
Python: 3.10.15 (main, Oct 3 2024, 07:27:34) [GCC 11.2.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 2147483648
GPU 0,1,2,3: Tesla V100-SXM2-16GB
CUDA_HOME: /usr
NVCC: Cuda compilation tools, release 12.0, V12.0.140
GCC: gcc (Ubuntu 12.3.0-17ubuntu1) 12.3.0
PyTorch: 2.5.1+cu124
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201703
- Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v3.5.3 (Git Hash 66f0cb9eb66affd2da3bf5f8d897376f04aae6af)
- Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications 09:07:15 [0/1798]
- Intel(R) MKL-DNN v3.5.3 (Git Hash 66f0cb9eb66affd2da3bf5f8d897376f04aae6af)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 12.4
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,co
de=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
- CuDNN 90.1
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.4, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLI
BCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGE
MM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation
-Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing
-Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-var
iable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_V
ERSION=2.5.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, U
SE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
TorchVision: 0.20.1+cu124
LMDeploy: 0.7.0.post3+
transformers: 4.45.2
gradio: 5.1.0
fastapi: 0.115.2
pydantic: 2.9.2
triton: 3.1.0
NVIDIA Topology:
GPU0 GPU1 GPU2 GPU3 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV1 NV1 NV2 0-15 0 N/A
GPU1 NV1 X NV2 NV1 0-15 0 N/A
GPU2 NV1 NV2 X NV1 0-15 0 N/A
GPU3 NV2 NV1 NV1 X 0-15 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
Error traceback
Traceback (most recent call last):
File "/home/username/miniconda3/envs/lmdeploy/bin/lmdeploy", line 8, in<module>sys.exit(run())
File "/home/username/miniconda3/envs/lmdeploy/lib/python3.10/site-packages/lmdeploy/cli/entrypoint.py", line 39, in run
args.run(args)
File "/home/username/miniconda3/envs/lmdeploy/lib/python3.10/site-packages/lmdeploy/cli/lite.py", line 131, in smooth_quant
smooth_quant(**kwargs)
File "/home/username/miniconda3/envs/lmdeploy/lib/python3.10/site-packages/lmdeploy/lite/apis/smooth_quant.py", line 45, in smooth_quant
vl_model, model, tokenizer, work_dir = calibrate(model,
File "/home/username/miniconda3/envs/lmdeploy/lib/python3.10/site-packages/lmdeploy/lite/apis/calibrate.py", line 312, in calibrate
calib_ctx.calibrate(all_data)
File "/home/username/miniconda3/envs/lmdeploy/lib/python3.10/site-packages/lmdeploy/lite/quantization/calibration.py", line 224, in calibrate
_ = model(data.to(self.device))
File "/home/username/miniconda3/envs/lmdeploy/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/username/miniconda3/envs/lmdeploy/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, **kwargs)
File "/home/username/miniconda3/envs/lmdeploy/lib/python3.10/site-packages/transformers/models/qwen2/modeling_qwen2.py", line 995, in forward
hidden_states = self.norm(hidden_states)
File "/home/username/miniconda3/envs/lmdeploy/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/username/miniconda3/envs/lmdeploy/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1844, in _call_impl
returninner()
File "/home/username/miniconda3/envs/lmdeploy/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1790, in inner
result = forward_call(*args, **kwargs)
File "/home/username/miniconda3/envs/lmdeploy/lib/python3.10/site-packages/transformers/models/qwen2/modeling_qwen2.py", line 132, in forward
variance = hidden_states.pow(2).mean(-1, keepdim=True)
torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 5.00 GiB. GPU 0 has a total capacity of 15.77 GiB of which 3.93 GiB is free. Including non-PyTorch memory, this process has 11.84 GiB memory in use. Of the allocated memory 11.46 GiB is allocated by PyTorch, and 12.85 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
The text was updated successfully, but these errors were encountered:
SolomonLeon
changed the title
[Bug]
[Bug] Encountering torch.OutOfMemoryError During int8 Quantization
Feb 16, 2025
Checklist
Describe the bug
I'm attempting to quantize the
DeepSeek-R1-Distill-Qwen-32B
model on my server equipped with 4x V100 GPUs using the following command:However, I keep encountering a
torch.OutOfMemoryError
even thoughCUDA_VISIBLE_DEVICES
is properly set. Could you please advise on how to successfully complete the quantization process?Reproduction
Environment
Error traceback
The text was updated successfully, but these errors were encountered: