title |
---|
stats_distribution_normal |
[TOC]
Experimental
A normal continuous random variate distribution, also known as Gaussian, or Gauss or Laplace-Gauss distribution. The location loc
specifies the mean or expectation. The scale
specifies the standard deviation.
Without argument the function returns a standard normal distributed random variate N(0,1).
With two arguments, the function returns a normal distributed random variate N(loc, scale^2). For complex arguments, the real and imaginary parts are independent of each other.
With three arguments, the function returns a rank one array of normal distributed random variates.
Note: the algorithm used for generating normal random variates is fundamentally limited to double precision.
result = [[stdlib_stats_distribution_normal(module):rvs_normal(interface)]]([loc, scale] [[, array_size]])
Function
array_size
: optional argument has intent(in)
and is a scalar of type integer
.
loc
: optional argument has intent(in)
and is a scalar of type real
or complex
.
scale
: optional argument has intent(in)
and is a scalar of type real
or complex
.
loc
and scale
arguments must be of the same type.
The result is a scalar or rank one array, with a size of array_size
, and as the same type of scale
and loc
.
program demo_normal_rvs
use stdlib_random, only: random_seed
use stdlib_stats_distribution_normal, only: norm => rvs_normal
implicit none
real :: a(2,3,4), b(2,3,4)
complx :: loc, scale
integer :: seed_put, seed_get
seed_put = 1234567
call random_seed(seed_put, seed_get)
print *, norm( ) !single standard normal random variate
! 0.563655198
print *, norm(1.0, 2.0)
!normal random variate mu=1.0, sigma=2.0
! -0.633261681
print *, norm(0.0, 1.0, 10) !an array of 10 standard norml random variates
! -3.38123664E-02 -0.190365672 0.220678389 -0.424612164 -0.249541596
! 0.865260184 1.11086845 -0.328349441 1.10873628 1.27049923
a(:,:,:) = 1.0
b(:,:,:) = 1.0
print *, norm(a,b) ! a rank 3 random variates array
!0.152776539 -7.51764774E-02 1.47208166 0.180561781 1.32407105
! 1.20383692 0.123445868 -0.455737948 -0.469808221 1.60750175
! 1.05748117 0.720934749 0.407810807 1.48165631 2.31749439
! 0.414566994 3.06084275 1.86505437 1.36338580 7.26878643E-02
! 0.178585172 1.39557445 0.828021586 0.872084975
loc = (-1.0, 2.0)
scale = (2.0, 1.0)
print *, norm(loc, scale)
!single complex normal random variate with real part of mu=-1, sigma=2;
!imagainary part of mu=2.0 and sigma=1.0
! (1.22566295,2.12518454)
end program demo_normal_rvs
Experimental
The probability density function (pdf) of the single real variable normal distribution:
For complex varible (x + y i) with independent real x and imaginary y parts, the joint probability density function is the product of corresponding marginal pdf of real and imaginary pdf (ref. "Probability and Random Processes with Applications to Signal Processing and Communications", 2nd ed., Scott L. Miller and Donald Childers, 2012, p.197):
result = [[stdlib_stats_distribution_normal(module):pdf_normal(interface)]](x, loc, scale)
Elemental function
x
: has intent(in)
and is a scalar of type real
or complex
.
loc
: has intent(in)
and is a scalar of type real
or complex
.
scale
: has intent(in)
and is a scalar of type real
or complex
.
All three arguments must have the same type.
The result is a scalar or an array, with a shape conformable to arguments, and as the same type of input arguments.
program demo_normal_pdf
use stdlib_random, only : random_seed
use stdlib_stats_distribution_normal, only : norm_pdf=>pdf_normal, &
norm => rvs_normal
implicit none
real :: x(3,4,5),a(3,4,5),b(3,4,5)
complx :: loc, scale
integer :: seed_put, seed_get
seed_put = 1234567
call random_seed(seed_put, seed_get)
print *, norm_pdf(1.0,0.,1.) !a probability density at 1.0 in standard normal
! 0.241970733
print *, norm_pdf(2.0,-1.0, 2.0)
!a probability density at 2.0 with mu=-1.0 sigma=2.0
!6.47588000E-02
x = reshape(norm(0.0, 1.0, 60),[3,4,5])
! standard normal random variates array
a(:,:,:) = 0.0
b(:,:,:) = 1.0
print *, norm_pdf(x, a, b) ! standard normal probability density array
! 0.340346158 0.285823315 0.398714304 0.391778737 0.389345556
! 0.364551932 0.386712372 0.274370432 0.215250477 0.378006011
! 0.215760440 0.177990928 0.278640658 0.223813817 0.356875211
! 0.285167664 0.378533930 0.390739858 0.271684974 0.138273031
! 0.135456234 0.331718773 0.398283750 0.383706540
loc = (1.0, -0.5)
scale = (1.0, 2.)
print *, norm_pdf((1.5,1.0), loc, scale)
! a complex normal probability density function at (1.5,1.0) with real part
! of mu=1.0, sigma=1.0 and imaginary part of mu=-0.5, sigma=2.0
! 5.30100204E-02
end program demo_normal_pdf
Experimental
Cumulative distribution function of the single real variable normal distribution:
For the complex variable (x + y i) with independent real x and imaginary y parts, the joint cumulative distribution function is the product of corresponding marginal cdf of real and imaginary cdf (ref. "Probability and Random Processes with Applications to Signal Processing and Communications", 2nd ed., Scott L. Miller and Donald Childers, 2012, p.197):
result = [[stdlib_stats_distribution_normal(module):cdf_normal(interface)]](x, loc, scale)
Elemental function
x
: has intent(in)
and is a scalar of type real
or complex
.
loc
: has intent(in)
and is a scalar of type real
or complex
.
scale
: has intent(in)
and is a scalar of type real
or complex
.
All three arguments must have the same type.
The result is a scalar or an array, with a shape conformable to arguments, as the same type of input arguments.
program demo_norm_cdf
use stdlib_random, only : random_seed
use stdlib_stats_distribution_normal, only : norm_cdf => cdf_normal, &
norm => rvs_normal
implicit none
real :: x(2,3,4),a(2,3,4),b(2,3,4)
complx :: loc, scale
integer :: seed_put, seed_get
seed_put = 1234567
call random_seed(seed_put, seed_get)
print *, norm_cdf(1.0, 0.0, 1.0) ! a standard normal cumulative at 1.0
! 0.841344714
print *, norm_cdf(2.0, -1.0, 2.0)
! a cumulative at 2.0 with mu=-1 sigma=2
! 0.933192849
x = reshape(norm(0.0, 1.0, 24),[2,3,4])
! standard normal random variates array
a(:,:,:) = 0.0
b(:,:,:) = 1.0
print *, norm_cdf(x, a, b) ! standard normal cumulative array
! 0.713505626 0.207069695 0.486513376 0.424511284 0.587328553
! 0.335559726 0.401470929 0.806552052 0.866687536 0.371323735
! 0.866228044 0.898046613 0.198435277 0.141147852 0.681565762
! 0.206268221 0.627057910 0.580759525 0.190364420 7.27325380E-02
! 7.08068311E-02 0.728241026 0.522919059 0.390097380
loc = (1.0,0.0)
scale = (0.5,1.0)
print *, norm_cdf((0.5,-0.5),loc,scale)
!complex normal cumulative distribution at (0.5,-0.5) with real part of
!mu=1.0, sigma=0.5 and imaginary part of mu=0.0, sigma=1.0
!4.89511043E-02
end program demo_norm_cdf