Skip to content

Commit 345218b

Browse files
committed
Remove masked arrays. Performance issues :((
1 parent ffc5988 commit 345218b

File tree

2 files changed

+33
-19
lines changed

2 files changed

+33
-19
lines changed

superpixel_segmentation.py

+27-16
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,4 @@
11
from __future__ import annotations
2-
from typing import Callable
32

43
from argparse import ArgumentParser
54

@@ -9,7 +8,7 @@
98

109
import numpy as np
1110

12-
from metrics import Metric, ColorFeatures
11+
from metrics import Metric, ColorFeatures, AverageColor
1312
from visualization import show
1413

1514

@@ -35,18 +34,22 @@ def main():
3534
# show the original image
3635
show(original, constraints=constraints)
3736

38-
labels = np.ma.array(
39-
# labels maps pixel location to a superpixel label
40-
slic(original[..., 0:3] / 255, 750, start_label=0),
41-
# don't mask anything if no alpha channel, otherwise mask transparent pixels
42-
mask=np.shape(original)[-1] == 4 and original[..., -1] == 0)
37+
masked = (
38+
# mask transparent pixels if there's an alpha channel
39+
original[..., -1] == 0 if np.shape(original)[-1] == 4
40+
# otherwise don't mask anything
41+
else np.zeros(np.shape(original)[:2], dtype=int))
42+
# each superpixel should have around 2,000 pixels
43+
n = len(np.transpose(np.where(~masked))) // 2000
44+
# labels maps pixel location to a superpixel label
45+
labels = np.array(slic(original[..., 0:3] / 255, n, start_label=0, mask=~masked))
4346

4447
# show the initial superpixel segmentation
4548
show(original, regions=labels, constraints=constraints)
4649

4750
# create dense distances matrix and merge based on optimized delta
4851
distances = distances_matrix(original, labels, metric=ColorFeatures)
49-
merged = constrained_division(labels, np.zeros_like(labels), distances, (0, 1), constraints)
52+
merged = constrained_division(labels, np.where(labels < 0, -1, 0), distances, (0, 1), constraints)
5053

5154
# show the image after applying the first two constraints
5255
show(original, regions=merged, constraints=constraints)
@@ -60,9 +63,11 @@ def main():
6063
# and the constraint currently governing its pixel
6164
shared_constraint = divided[constraint]
6265
shared_mask = divided == shared_constraint
63-
shared_superpixels = np.ma.array(labels, mask=(~shared_mask))
66+
shared_superpixels = np.copy(labels)
67+
shared_superpixels[~shared_mask] = -1
6468
# which superpixels are excluded? make a list of labels
6569
removed_superpixels = np.unique(labels[~shared_mask])
70+
removed_superpixels = removed_superpixels[removed_superpixels >= 0]
6671
removed_mask = np.ones_like(distances).astype(bool)
6772
for i in removed_superpixels:
6873
# remove i'th row and column
@@ -79,6 +84,9 @@ def main():
7984
pass
8085

8186

87+
# IDEA what if instead of actually relabelling the image each time, I just look for the constraint locations?
88+
89+
8290
def constrained_division(superpixels: np.ndarray, merged_nonlocal: np.ndarray, distances: np.ndarray, c_i: tuple[int, int], constraints: list):
8391
"""Given a possibly-transparent image's masked superpixel segmentation, the previous assignment of constraints, the pairwise distance between those superpixels (after RAG merging), and two indices into the given constraints list, divide the image into additional semantic regions such that each constraint is in its own region. The labels returned from this method correspond to the given constraints."""
8492
old_constraint = constraints[c_i[0]]
@@ -110,7 +118,7 @@ def constrained_division(superpixels: np.ndarray, merged_nonlocal: np.ndarray, d
110118
b = merged[new_constraint]
111119
# assign regions not containing any constraint to the older one
112120
constraint_labels = merged[tuple(np.transpose(constraints))]
113-
for label in np.ma.compressed(np.unique(merged)):
121+
for label in np.unique(merged[merged >= 0]):
114122
if label not in constraint_labels:
115123
# replace label with less recent constraint
116124
merged[merged == label] = a
@@ -121,13 +129,13 @@ def constrained_division(superpixels: np.ndarray, merged_nonlocal: np.ndarray, d
121129
for i, c in enumerate(constraints[:np.max(merged_nonlocal) + 2]):
122130
label = merged[c]
123131
# ignore masked labels
124-
if label is not np.ma.masked:
132+
if label >= 0:
125133
conditions.append(merged == label)
126134
replacements.append(i)
127135
# use -1 as "masked" since masked arrays get overridden
128-
merged = np.select(conditions, replacements, default=-1)
136+
merged = np.select(conditions, replacements, default=-2)
129137
# fill masked values with previous constraint
130-
merged[merged == -1] = merged_nonlocal[merged == -1]
138+
merged[merged == -2] = merged_nonlocal[merged == -2]
131139
return merged
132140

133141

@@ -136,10 +144,12 @@ def connected_within_threshold(superpixels: np.ndarray, distances: np.ndarray, d
136144
# merged_labels maps index of node to a label for each newly merged group
137145
n, merged_labels = connected_components(distances < delta, directed=False)
138146
# superpixel_labels gives the label for the n'th superpixel
139-
superpixel_labels = np.unique(np.ma.compressed(superpixels))
147+
superpixel_labels = np.unique(superpixels)
148+
superpixel_labels = superpixel_labels[superpixel_labels >= 0]
140149
# create labelled image shaped like superpixels but masking everything
141-
labels = np.ma.array(np.zeros_like(superpixels), mask=True)
150+
labels = np.ones_like(superpixels) * -1
142151
# set labels for each pixel for each superpixel
152+
# FIXME this takes a while when run around 25x
143153
for index, label in enumerate(merged_labels):
144154
labels[superpixels == superpixel_labels[index]] = label
145155
return labels
@@ -148,7 +158,8 @@ def connected_within_threshold(superpixels: np.ndarray, distances: np.ndarray, d
148158
def distances_matrix(original: np.ndarray, superpixels: np.ndarray, metric: Metric) -> np.ndarray:
149159
"""Create a matrix with the metric-based distances between every pair of the given superpixels implied by the original and labelled images."""
150160
# store list of valid superpixel labels
151-
unique_labels = np.ma.compressed(np.ma.unique(superpixels))
161+
unique_labels = np.unique(superpixels)
162+
unique_labels = unique_labels[unique_labels >= 0]
152163
# bundle index information with rgb
153164
precomputed = []
154165
for label in unique_labels:

visualization.py

+6-3
Original file line numberDiff line numberDiff line change
@@ -14,9 +14,12 @@ def show_features(features: np.ndarray):
1414

1515
def show_regions(original: np.ndarray, labels: np.ndarray):
1616
"""Visualize the label-defined regions of an 8-bit RGB(A) image by setting a regions color to the average color of pixels in the region."""
17+
# add opacity field, if it would be necessary
18+
if np.shape(original)[-1] == 3 and -1 in labels:
19+
original = np.insert(original, 3, np.where(labels >= 0, 255, 0), axis=-1)
1720
visual = np.zeros_like(original)
1821
# set each non-masked region to the average color
19-
for label in np.ma.compressed(np.ma.unique(labels)):
22+
for label in np.unique(labels[labels >= 0]):
2023
region = labels == label
2124
# axis=0 averages rgb(a) channels separately
2225
average = np.mean(original[region], axis=0).astype(int)
@@ -98,8 +101,8 @@ def layer_info(image: np.ndarray, *, regions=None, features=None, constraints=No
98101
feat = show_features(features)
99102
# make sure they have the same shape
100103
if np.shape(result) != np.shape(feat):
101-
# insert 255 at index 2 for each entry
102-
feat = np.insert(feat, 2, 255, axis=-1)
104+
# insert 255 at index 3 for each entry
105+
feat = np.insert(feat, 3, 255, axis=-1)
103106
result = result * (1 - alpha) + feat * alpha
104107
# cast back to integer
105108
result = result.astype(np.uint8)

0 commit comments

Comments
 (0)