1
1
from __future__ import annotations
2
- from typing import Callable
3
2
4
3
from argparse import ArgumentParser
5
4
9
8
10
9
import numpy as np
11
10
12
- from metrics import Metric , ColorFeatures
11
+ from metrics import Metric , ColorFeatures , AverageColor
13
12
from visualization import show
14
13
15
14
@@ -35,18 +34,22 @@ def main():
35
34
# show the original image
36
35
show (original , constraints = constraints )
37
36
38
- labels = np .ma .array (
39
- # labels maps pixel location to a superpixel label
40
- slic (original [..., 0 :3 ] / 255 , 750 , start_label = 0 ),
41
- # don't mask anything if no alpha channel, otherwise mask transparent pixels
42
- mask = np .shape (original )[- 1 ] == 4 and original [..., - 1 ] == 0 )
37
+ masked = (
38
+ # mask transparent pixels if there's an alpha channel
39
+ original [..., - 1 ] == 0 if np .shape (original )[- 1 ] == 4
40
+ # otherwise don't mask anything
41
+ else np .zeros (np .shape (original )[:2 ], dtype = int ))
42
+ # each superpixel should have around 2,000 pixels
43
+ n = len (np .transpose (np .where (~ masked ))) // 2000
44
+ # labels maps pixel location to a superpixel label
45
+ labels = np .array (slic (original [..., 0 :3 ] / 255 , n , start_label = 0 , mask = ~ masked ))
43
46
44
47
# show the initial superpixel segmentation
45
48
show (original , regions = labels , constraints = constraints )
46
49
47
50
# create dense distances matrix and merge based on optimized delta
48
51
distances = distances_matrix (original , labels , metric = ColorFeatures )
49
- merged = constrained_division (labels , np .zeros_like (labels ), distances , (0 , 1 ), constraints )
52
+ merged = constrained_division (labels , np .where (labels < 0 , - 1 , 0 ), distances , (0 , 1 ), constraints )
50
53
51
54
# show the image after applying the first two constraints
52
55
show (original , regions = merged , constraints = constraints )
@@ -60,9 +63,11 @@ def main():
60
63
# and the constraint currently governing its pixel
61
64
shared_constraint = divided [constraint ]
62
65
shared_mask = divided == shared_constraint
63
- shared_superpixels = np .ma .array (labels , mask = (~ shared_mask ))
66
+ shared_superpixels = np .copy (labels )
67
+ shared_superpixels [~ shared_mask ] = - 1
64
68
# which superpixels are excluded? make a list of labels
65
69
removed_superpixels = np .unique (labels [~ shared_mask ])
70
+ removed_superpixels = removed_superpixels [removed_superpixels >= 0 ]
66
71
removed_mask = np .ones_like (distances ).astype (bool )
67
72
for i in removed_superpixels :
68
73
# remove i'th row and column
@@ -79,6 +84,9 @@ def main():
79
84
pass
80
85
81
86
87
+ # IDEA what if instead of actually relabelling the image each time, I just look for the constraint locations?
88
+
89
+
82
90
def constrained_division (superpixels : np .ndarray , merged_nonlocal : np .ndarray , distances : np .ndarray , c_i : tuple [int , int ], constraints : list ):
83
91
"""Given a possibly-transparent image's masked superpixel segmentation, the previous assignment of constraints, the pairwise distance between those superpixels (after RAG merging), and two indices into the given constraints list, divide the image into additional semantic regions such that each constraint is in its own region. The labels returned from this method correspond to the given constraints."""
84
92
old_constraint = constraints [c_i [0 ]]
@@ -110,7 +118,7 @@ def constrained_division(superpixels: np.ndarray, merged_nonlocal: np.ndarray, d
110
118
b = merged [new_constraint ]
111
119
# assign regions not containing any constraint to the older one
112
120
constraint_labels = merged [tuple (np .transpose (constraints ))]
113
- for label in np .ma . compressed ( np . unique (merged ) ):
121
+ for label in np .unique (merged [ merged >= 0 ] ):
114
122
if label not in constraint_labels :
115
123
# replace label with less recent constraint
116
124
merged [merged == label ] = a
@@ -121,13 +129,13 @@ def constrained_division(superpixels: np.ndarray, merged_nonlocal: np.ndarray, d
121
129
for i , c in enumerate (constraints [:np .max (merged_nonlocal ) + 2 ]):
122
130
label = merged [c ]
123
131
# ignore masked labels
124
- if label is not np . ma . masked :
132
+ if label >= 0 :
125
133
conditions .append (merged == label )
126
134
replacements .append (i )
127
135
# use -1 as "masked" since masked arrays get overridden
128
- merged = np .select (conditions , replacements , default = - 1 )
136
+ merged = np .select (conditions , replacements , default = - 2 )
129
137
# fill masked values with previous constraint
130
- merged [merged == - 1 ] = merged_nonlocal [merged == - 1 ]
138
+ merged [merged == - 2 ] = merged_nonlocal [merged == - 2 ]
131
139
return merged
132
140
133
141
@@ -136,10 +144,12 @@ def connected_within_threshold(superpixels: np.ndarray, distances: np.ndarray, d
136
144
# merged_labels maps index of node to a label for each newly merged group
137
145
n , merged_labels = connected_components (distances < delta , directed = False )
138
146
# superpixel_labels gives the label for the n'th superpixel
139
- superpixel_labels = np .unique (np .ma .compressed (superpixels ))
147
+ superpixel_labels = np .unique (superpixels )
148
+ superpixel_labels = superpixel_labels [superpixel_labels >= 0 ]
140
149
# create labelled image shaped like superpixels but masking everything
141
- labels = np .ma . array ( np . zeros_like ( superpixels ), mask = True )
150
+ labels = np .ones_like ( superpixels ) * - 1
142
151
# set labels for each pixel for each superpixel
152
+ # FIXME this takes a while when run around 25x
143
153
for index , label in enumerate (merged_labels ):
144
154
labels [superpixels == superpixel_labels [index ]] = label
145
155
return labels
@@ -148,7 +158,8 @@ def connected_within_threshold(superpixels: np.ndarray, distances: np.ndarray, d
148
158
def distances_matrix (original : np .ndarray , superpixels : np .ndarray , metric : Metric ) -> np .ndarray :
149
159
"""Create a matrix with the metric-based distances between every pair of the given superpixels implied by the original and labelled images."""
150
160
# store list of valid superpixel labels
151
- unique_labels = np .ma .compressed (np .ma .unique (superpixels ))
161
+ unique_labels = np .unique (superpixels )
162
+ unique_labels = unique_labels [unique_labels >= 0 ]
152
163
# bundle index information with rgb
153
164
precomputed = []
154
165
for label in unique_labels :
0 commit comments