-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathSparseBenchmarks.jl
371 lines (332 loc) · 18.8 KB
/
SparseBenchmarks.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
module SparseBenchmarks
include(joinpath(dirname(@__FILE__), "..", "utils", "RandUtils.jl"))
using .RandUtils
using BenchmarkTools
using SparseArrays
using LinearAlgebra
const SUITE = BenchmarkGroup(["array"])
#########
# index #
#########
# Note that some of the "logical" tests are commented
# out because they require resolution of JuliaLang/julia#14717.
g = addgroup!(SUITE, "index")
# vector #
#--------#
getspvec(s) = samesprand(s, inv(sqrt(s)))
getsplogvec(s) = samesprandbool(s, 1e-5)
let sizes = (10^3, 10^4, 10^5)
for s in sizes
g["spvec", "array", s] = @benchmarkable getindex(v, i) setup=(s=$s; v=getspvec(s); i=samerand(1:s, s))
g["spvec", "integer", s] = @benchmarkable getindex(v, i) setup=(s=$s; v=getspvec(s); i=samerand(1:s))
g["spvec", "range", s] = @benchmarkable getindex(v, i) setup=(s=$s; v=getspvec(s); i=1:s)
g["spvec", "logical", s] = @benchmarkable getindex(v, i) setup=(s=$s; v=getspvec(s); i=samerand(Bool, s))
# g["spvec", "splogical", s, nnz(v), nnz(l)] = @benchmarkable getindex($v, $l) setup=(s=$s; v=getspvec(s); i=samerand(Bool, s); l=getsplogvec(s))
end
end
# matrix #
#--------#
getind(s) = samerand(1:s)
getmatrix(s) = samesprand(s, s, inv(sqrt(s)))
getvector(s) = samerand(1:s, s)
getlogvec(s) = samerand(Bool, s)
getsplogmat(s) = samesprandbool(s, s, 1e-5)
getsplogvec(s) = samesprandbool(s, 1, 1e-5)
let sizes = (10, 10^2, 10^3)
for s in sizes
g["spmat", "col", "array", s] = @benchmarkable getindex(m, v, c) setup=(s=$s; m=getmatrix(s); v=getvector(s); c=getind(s))
g["spmat", "col", "range", s] = @benchmarkable getindex(m, v, c) setup=(s=$s; m=getmatrix(s); v=1:s; c=getind(s))
g["spmat", "col", "OneTo", s] = @benchmarkable getindex(m, v, c) setup=(s=$s; m=getmatrix(s); v=Base.OneTo(s); c=getind(s))
g["spmat", "col", "logical", s] = @benchmarkable getindex(m, l, c) setup=(s=$s; m=getmatrix(s); l=getlogvec(s); c=getind(s))
# g["spmat", "col", "splogical", s] = @benchmarkable getindex(m, sl, c) setup=(s=$s; m=getmatrix(s); sl=getsplogvec(s); c=getind(s))
end
for s in sizes
g["spmat", "row", "array", s] = @benchmarkable getindex(m, r, v) setup=(s=$s; m=getmatrix(s); v=getvector(s); r=getind(s))
g["spmat", "row", "range", s] = @benchmarkable getindex(m, r, v) setup=(s=$s; m=getmatrix(s); v=1:s; r=getind(s))
g["spmat", "row", "OneTo", s] = @benchmarkable getindex(m, r, v) setup=(s=$s; m=getmatrix(s); v=Base.OneTo(s); r=getind(s))
g["spmat", "row", "logical", s] = @benchmarkable getindex(m, r, l) setup=(s=$s; m=getmatrix(s); l=getlogvec(s); r=getind(s))
# g["spmat", "row", "splogical", s] = @benchmarkable getindex(m, r, sl) setup=(s=$s; m=getmatrix(s); sl=getsplogvec(s); r=getind(s))
end
for s in sizes
g["spmat", "array", s] = @benchmarkable getindex(m, v, v) setup=(s=$s; m=getmatrix(s); v=getvector(s))
g["spmat", "integer", s] = @benchmarkable getindex(m, i, i) setup=(s=$s; m=getmatrix(s); i=getind(s))
g["spmat", "range", s] = @benchmarkable getindex(m, 1:s, 1:s) setup=(s=$s; m=getmatrix(s))
g["spmat", "OneTo", s] = @benchmarkable getindex(m, Base.OneTo(s), Base.OneTo(s)) setup=(s=$s; m=getmatrix(s))
g["spmat", "logical", s] = @benchmarkable getindex(m, l, l) setup=(s=$s; m=getmatrix(s); l=getlogvec(s))
g["spmat", "splogical", s] = @benchmarkable getindex(m, sl) setup=(s=$s; m=getmatrix(s); sl=getsplogmat(s))
end
end
for b in values(g)
b.params.time_tolerance = 0.3
end
######################
# transpose (#14631) #
######################
g = addgroup!(SUITE, "transpose", ["adjoint"])
for s in ((600, 600),
(600, 400),
(20000, 20000),
(20000, 10000))
g["transpose", s] = @benchmarkable transpose(m) setup=(m=samesprand($s[1], $s[2], 0.01))
g["transpose!", s] = @benchmarkable transpose!(mt, m) setup=(m=samesprand($s[1], $s[2], 0.01); mt=copy(transpose(m)))
g["adjoint", s] = @benchmarkable adjoint(cm) setup=(m=samesprand($s[1], $s[2], 0.01); cm=m + m*im)
g["adjoint!", s] = @benchmarkable adjoint!(cmt, cm) setup=(m=samesprand($s[1], $s[2], 0.01); cm=m + m*im; cmt=copy(transpose(cm)))
end
for b in values(g)
b.params.time_tolerance = 0.3
end
##############
# arithmetic #
##############
g = addgroup!(SUITE, "arithmetic")
# unary minus, julialang repo issue #19503 / fix #19530
g["unary minus", (600, 600)] = @benchmarkable -m setup=(m=samesprand(600, 600, 0.01))
g["unary minus", (20000, 20000)] = @benchmarkable -m setup=(m=samesprand(20000, 20000, 0.01))
for b in values(g)
b.params.time_tolerance = 0.3
end
################
# constructors #
################
g = addgroup!(SUITE, "constructors")
const UPLO = :U
let sizes = (10, 10^2, 10^3)
for s in sizes
nz = floor(Int, 1e-4*s*s)
getI() = samerand(1:s, nz)
getJ() = samerand(1:s, nz)
getV() = randvec(nz)
g["IV", s] = @benchmarkable sparsevec(I, V) setup=(I=$getI(); V=$getV())
g["IJV", s] = @benchmarkable sparse(I, J, V) setup=(I=$getI(); J=$getJ(); V=$getV())
g["Diagonal", s] = @benchmarkable sparse(D) setup=(D=Diagonal(randvec($s)))
g["Bidiagonal", s] = @benchmarkable sparse(B) setup=(B=Bidiagonal(randvec($s), randvec($s-1), UPLO))
g["Tridiagonal", s] = @benchmarkable sparse(T) setup=(T=Tridiagonal(randvec($s-1), randvec($s), randvec($s-1)))
g["SymTridiagonal", s] = @benchmarkable sparse(ST) setup=(ST=SymTridiagonal(randvec($s), randvec($s-1)))
end
end
#########################
# matrix multiplication #
#########################
g = addgroup!(SUITE, "matmul")
# mixed sparse-dense matmul #
#---------------------------#
using LinearAlgebra: *, mul!
function allocmats_ds(m, k, n, nnzc, T)
densemat, sparsemat = samerand(T, m, k), samesprand(T, k, n, nnzc/k)
tdensemat = transpose!(similar(densemat, reverse(size(densemat))), densemat)
tsparsemat = transpose!(similar(sparsemat, reverse(size(sparsemat))), sparsemat)
destmat = similar(densemat, m, n)
return destmat, densemat, sparsemat, tdensemat, tsparsemat
end
function allocmats_sd(m, k, n, nnzc, T)
densemat, sparsemat = samerand(T, k, m), samesprand(T, n, k, nnzc/n)
tdensemat = transpose!(similar(densemat, reverse(size(densemat))), densemat)
tsparsemat = transpose!(similar(sparsemat, reverse(size(sparsemat))), sparsemat)
destmat = similar(densemat, n, m)
return destmat, densemat, sparsemat, tdensemat, tsparsemat
end
getsizes(om, ok, on, s) = map(x -> Int(s*x), (om, ok, on))
for (om, ok, on) in (# order of matmul dimensions m, k, and n
(10^2, 10^2, 10^2), # dense square * sparse square -> dense square
(10^1, 10^1, 10^3), # dense square * sparse short -> dense short
(10^2, 10^2, 10^1), # dense square * sparse tall -> dense tall
(10^1, 10^3, 10^3), # dense short * sparse square -> dense short
(10^1, 10^2, 10^3), # dense short * sparse short -> dense short
(10^1, 10^3, 10^2), # dense short * sparse tall -> dense short
(10^3, 10^1, 10^1), # dense tall * sparse square -> dense tall
(10^2, 10^1, 10^2), # dense tall * sparse short -> dense square
) # the preceding descriptions apply to dense-sparse matmul without
# any transpositions. other cases are described below
#
# the transpose and adjoint variants share kernel code
# the in-place and out-of-place variants share kernel code
# so exercise the different variants in different ways
#
# for A[t|c]_mul_B[t|c][!]([dense,], dense, sparse) kernels,
# the dense matrix is m-by-k, or k-by-m for A(c|t) operations
# the sparse matrix is k-by-n, or n-by-k for B(c|t) operations
# and the (dense) destination matrix is m-by-n in any case
# the sparse matrix has approximately 10 entries per column
#
# # out-of-place dense-sparse ops, transpose variants, i.e. A[t]_mul_B[t](dense, sparse)
m, k, n = getsizes(om, ok, on, 1/2)
g["A_mul_B", "dense $(m)x$(k), sparse $(k)x$(n) -> dense $(m)x$(n)"] = @benchmarkable *(densemat, sparsemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_ds($m, $k, $n, 4, Float64)
end
g["A_mul_Bt", "dense $(m)x$(k), sparse $(n)x$(k) -> dense $(m)x$(n)"] = @benchmarkable *(densemat, ttsparsemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_ds($m, $k, $n, 4, Float64)
ttsparsemat = Transpose(tsparsemat)
end
g["At_mul_B", "dense $(k)x$(m), sparse $(k)x$(n) -> dense $(m)x$(n)"] = @benchmarkable *(ttdensemat, sparsemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_ds($m, $k, $n, 4, Float64)
ttdensemat = Transpose(tdensemat)
end
g["At_mul_Bt", "dense $(k)x$(m), sparse $(n)x$(k) -> dense $(m)x$(n)"] = @benchmarkable *(ttdensemat, ttsparsemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_ds($m, $k, $n, 4, Float64)
ttdensemat = Transpose(tdensemat)
ttsparsemat = Transpose(tsparsemat)
end
# in-place dense-sparse -> dense ops, transpose variants, i.e. A[t]_mul[t]!(dense, dense, sparse)
m, k, n = getsizes(om, ok, on, 4)
g["A_mul_B!", "dense $(m)x$(k), sparse $(k)x$(n) -> dense $(m)x$(n)"] = @benchmarkable mul!(destmat, densemat, sparsemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_ds($m, $k, $n, 12, Float64)
end
g["A_mul_Bt!", "dense $(m)x$(k), sparse $(n)x$(k) -> dense $(m)x$(n)"] = @benchmarkable mul!(destmat, densemat, ttsparsemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_ds($m, $k, $n, 12, Float64)
ttsparsemat = Transpose(tsparsemat)
end
g["At_mul_B!", "dense $(k)x$(m), sparse $(k)x$(n) -> dense $(m)x$(n)"] = @benchmarkable mul!(destmat, ttdensemat, sparsemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_ds($m, $k, $n, 12, Float64)
ttdensemat = Transpose(tdensemat)
end
g["At_mul_Bt!", "dense $(k)x$(m), sparse $(n)x$(k) -> dense $(m)x$(n)"] = @benchmarkable mul!(destmat, ttdensemat, ttsparsemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_ds($m, $k, $n, 12, Float64)
ttdensemat = Transpose(tdensemat)
ttsparsemat = Transpose(tsparsemat)
end
# out-of-place dense-sparse ops, adjoint variants, i.e. A[c]_mul_B[c](dense, sparse)
m, k, n = getsizes(om, ok, on, 1/2)
g["A_mul_Bc", "dense $(m)x$(k), sparse $(n)x$(k) -> dense $(m)x$(n)"] = @benchmarkable *(densemat, atsparsemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_ds($m, $k, $n, 4, ComplexF64)
atsparsemat = Adjoint(tsparsemat)
end
g["Ac_mul_B", "dense $(k)x$(m), sparse $(k)x$(n) -> dense $(m)x$(n)"] = @benchmarkable *(atdensemat, sparsemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_ds($m, $k, $n, 4, ComplexF64)
atdensemat = Adjoint(tdensemat)
end
g["Ac_mul_Bc", "dense $(k)x$(m), sparse $(n)x$(k) -> dense $(m)x$(n)"] = @benchmarkable *(atdensemat, atsparsemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_ds($m, $k, $n, 4, ComplexF64)
atdensemat = Adjoint(tdensemat)
atsparsemat = Adjoint(tsparsemat)
end
# in-place dense-sparse -> dense ops, adjoint variants, i.e. A[c]_mul[c]!(dense, dense, sparse)
m, k, n = getsizes(om, ok, on, 2)
g["A_mul_Bc!", "dense $(m)x$(k), sparse $(n)x$(k) -> dense $(m)x$(n)"] = @benchmarkable mul!(destmat, densemat, atsparsemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_ds($m, $k, $n, 8, ComplexF64)
atsparsemat = Adjoint(tsparsemat)
end
g["Ac_mul_B!", "dense $(k)x$(m), sparse $(k)x$(n) -> dense $(m)x$(n)"] = @benchmarkable mul!(destmat, atdensemat, sparsemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_ds($m, $k, $n, 8, ComplexF64)
atdensemat = Adjoint(tdensemat)
end
g["Ac_mul_Bc!", "dense $(k)x$(m), sparse $(n)x$(k) -> dense $(m)x$(n)"] = @benchmarkable mul!(destmat, atdensemat, atsparsemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_ds($m, $k, $n, 8, ComplexF64)
atdensemat = Adjoint(tdensemat)
atsparsemat = Adjoint(tsparsemat)
end
#
# for A[t|c]_mul_B[t|c][!]([dense,], sparse, dense) kernels,
# the sparse matrix is n-by-k, or k-by-n for B(c|t) operations
# the dense matrix is k-by-m, or m-by-k for A(c|t) operations
# and the (dense) destination matrix is n-by-m in any case
# the sparse matrix has approximately 10 entries per column
#
# out-of-place sparse-dense ops, transpose variants, i.e. A[t]_mul_B[t](sparse, dense)
m, k, n = getsizes(om, ok, on, 1/2)
g["A_mul_B", "sparse $(n)x$(k), dense $(k)x$(m) -> dense $(n)x$(m)"] = @benchmarkable *(sparsemat, densemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_sd($m, $k, $n, 4, ComplexF64)
end
g["A_mul_Bt", "sparse $(n)x$(k), dense $(m)x$(k) -> dense $(n)x$(m)"] = @benchmarkable *(sparsemat, ttdensemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_sd($m, $k, $n, 4, ComplexF64)
ttdensemat = Transpose(tdensemat)
end
g["At_mul_B", "sparse $(k)x$(n), dense $(k)x$(m) -> dense $(n)x$(m)"] = @benchmarkable *(ttsparsemat, densemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_sd($m, $k, $n, 4, ComplexF64)
ttsparsemat = Transpose(tsparsemat)
end
g["At_mul_Bt", "sparse $(k)x$(n), dense $(m)x$(k) -> dense $(n)x$(m)"] = @benchmarkable *(ttsparsemat, ttdensemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_sd($m, $k, $n, 4, ComplexF64)
ttdensemat = Transpose(tdensemat)
ttsparsemat = Transpose(tsparsemat)
end
# in-place sparse-dense -> dense ops, transpose variants, i.e. A[t|c]_mul_B[t|c]!(dense, sparse, dense)
m, k, n = getsizes(om, ok, on, 4)
g["A_mul_B!", "sparse $(n)x$(k), dense $(k)x$(m) -> dense $(n)x$(m)"] = @benchmarkable mul!(destmat, sparsemat, densemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_sd($m, $k, $n, 12, ComplexF64)
end
g["A_mul_Bt!", "sparse $(n)x$(k), dense $(m)x$(k) -> dense $(n)x$(m)"] = @benchmarkable mul!(destmat, sparsemat, ttdensemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_sd($m, $k, $n, 12, ComplexF64)
ttdensemat = Transpose(tdensemat)
end
g["At_mul_B!", "sparse $(k)x$(n), dense $(k)x$(m) -> dense $(n)x$(m)"] = @benchmarkable mul!(destmat, ttsparsemat, densemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_sd($m, $k, $n, 12, ComplexF64)
ttsparsemat = Transpose(tsparsemat)
end
g["At_mul_Bt!", "sparse $(k)x$(n), dense $(m)x$(k) -> dense $(n)x$(m)"] = @benchmarkable mul!(destmat, ttsparsemat, ttdensemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_sd($m, $k, $n, 12, ComplexF64)
ttdensemat = Transpose(tdensemat)
ttsparsemat = Transpose(tsparsemat)
end
# out-of-place sparse-dense ops, adjoint variants, i.e. A[c]_mul_B[c](sparse, dense)
m, k, n = getsizes(om, ok, on, 1/2)
g["A_mul_Bc", "sparse $(n)x$(k), dense $(m)x$(k) -> dense $(n)x$(m)"] = @benchmarkable *(sparsemat, atdensemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_sd($m, $k, $n, 4, ComplexF64)
atdensemat = Adjoint(tdensemat)
end
g["Ac_mul_B", "sparse $(k)x$(n), dense $(k)x$(m) -> dense $(n)x$(m)"] = @benchmarkable *(atsparsemat, densemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_sd($m, $k, $n, 4, ComplexF64)
atsparsemat = Adjoint(tsparsemat)
end
g["Ac_mul_Bc", "sparse $(k)x$(n), dense $(m)x$(k) -> dense $(n)x$(m)"] = @benchmarkable *(atsparsemat, atdensemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_sd($m, $k, $n, 4, ComplexF64)
atdensemat = Adjoint(tdensemat)
atsparsemat = Adjoint(tsparsemat)
end
# in-place sparse-dense -> dense ops, adjoint variants, i.e. A[t|c]_mul_B[t|c]!(dense, sparse, dense)
m, k, n = getsizes(om, ok, on, 2)
g["A_mul_Bc!", "sparse $(n)x$(k), dense $(m)x$(k) -> dense $(n)x$(m)"] = @benchmarkable mul!(destmat, sparsemat, atdensemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_sd($m, $k, $n, 8, ComplexF64)
atdensemat = Adjoint(tdensemat)
end
g["Ac_mul_B!", "sparse $(k)x$(n), dense $(k)x$(m) -> dense $(n)x$(m)"] = @benchmarkable mul!(destmat, atsparsemat, densemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_sd($m, $k, $n, 8, ComplexF64)
atsparsemat = Adjoint(tsparsemat)
end
g["Ac_mul_Bc!", "sparse $(k)x$(n), dense $(m)x$(k) -> dense $(n)x$(m)"] = @benchmarkable mul!(destmat, atsparsemat, atdensemat) setup=begin
destmat, densemat, sparsemat, tdensemat, tsparsemat = allocmats_sd($m, $k, $n, 8, ComplexF64)
atdensemat = Adjoint(tdensemat)
atsparsemat = Adjoint(tsparsemat)
end
end
for b in values(g)
b.params.time_tolerance = 0.3
end
#################
# sparse matvec #
#################
g = addgroup!(SUITE, "sparse matvec")
g["non-adjoint"] = @benchmarkable A * B setup=begin
B = randn(100000, 100)
A = sprand(100000, 100000, 0.00001)
end
g["adjoint"] = @benchmarkable A' * B setup=begin
B = randn(100000, 100)
A = sprand(100000, 100000, 0.00001)
end
#################
# sparse solves #
#################
g = addgroup!(SUITE, "sparse solves")
# Problem similar to issue #30288
let m = 10000, n = 9000
getA() = spdiagm(0 => fill(2.0, m),
-1 => fill(1.0, m - 1),
1 => fill(1.0, m - 1),
360 => fill(1.0, m - 360))[:, 1:n]
getAtA() = (A=getA(); A'A)
getb() = ones(m)
getB() = ones(m, 2)
getAtb() = getA()'getb()
getAtB() = getA()'getB()
g["least squares (default), vector rhs"] = @benchmarkable A\b setup=(A=$getA(); b=$getb())
g["least squares (default), matrix rhs"] = @benchmarkable A\B setup=(A=$getA(); B=$getB())
g["least squares (qr), vector rhs"] = @benchmarkable qr(A)\b setup=(A=$getA(); b=$getb())
g["least squares (qr), matrix rhs"] = @benchmarkable qr(A)\B setup=(A=$getA(); B=$getB())
g["square system (default), vector rhs"] = @benchmarkable AtA\Atb setup=(AtA=$getAtA(); Atb=$getAtb())
g["square system (default), matrix rhs"] = @benchmarkable AtA\AtB setup=(AtA=$getAtA(); AtB=$getAtB())
g["square system (ldlt), vector rhs"] = @benchmarkable ldlt(AtA)\Atb setup=(AtA=$getAtA(); Atb=$getAtb())
g["square system (ldlt), matrix rhs"] = @benchmarkable ldlt(AtA)\AtB setup=(AtA=$getAtA(); AtB=$getAtB())
g["square system (lu), vector rhs"] = @benchmarkable lu(AtA)\Atb setup=(AtA=$getAtA(); Atb=$getAtb())
g["square system (lu), matrix rhs"] = @benchmarkable lu(AtA)\AtB setup=(AtA=$getAtA(); AtB=$getAtB())
end
end # module